Electrons are combined, in what may be called planetary systems, in the substance of the atom; indeed, it is not certain that the atom consists of anything else but such combinations of electrons, held together by the inscrutable force of positive electricity. Some, at least, of the electrons within the atom are violently active—perhaps whirling in planetary orbits,—and from time to time one or more electrons may escape from the atomic system. In thus escaping an electron takes away its charge of negative electricity, and the previously neutral atom becomes positively electrified. Meanwhile the free electron may hurtle about with its charge of negative electricity, or may combine with some neutral atom and thus give to that neutral atom a negative charge. Under certain conditions myriads of these electrons, escaped thus from their atomic systems, may exist in the free state. For example, the so-called beta (ß) rays of radium and its allies consist of such electrons, which are being hurtled off into space with approximately the speed of light. The cathode rays, of which we have heard so much in recent years, also consist of free electrons.

But, for that matter, all currents of electricity whatever, according to this newest theory, consist simply of aggregations of free electrons. According to theory, if the electrons are in uniform motion they produce the phenomena of constant currents of electricity; if they move non-uniformly they produce electromagnetic phenomena (for example, the waves used in wireless telegraphy); if they move with periodic motion they produce the waves of light. Meanwhile stationary aggregations of electrons produce the so-called electrostatic phenomena. All the various ether waves are thus believed to be produced by changes in the motions of the electrons. A very sudden stoppage, such as is produced when the cathode ray meets an impassable barrier, produces the X-ray.

With these explanations in mind, it will be obvious how closely this newest interpretation of electricity corresponds in its general features with the old one-fluid theory of Franklin. The efforts of the present-day physicist have resulted essentially in an analysis of Franklin's fluid, which gives to this fluid an atomic structure. The new theory takes a step beyond the old in suggesting the idea that the same particles which make up the electric fluid enter also into the composition—perhaps are the sole physical constituents—of every material substance as well. But while the new theory thus extends the bounds of our vision, we must not claim that it fully solves the mystery. We can visualize the ultimate constituent of electricity as an electron one thousand times smaller than the hydrogen atom, which has mass and inertia, and which possesses powers of attraction and repulsion. But as to the actual nature of this ultimate particle we are still in the dark. There are, however, some interesting theories as to its character, which should claim at least incidental attention.

We have all along spoken of the electron as an exceedingly minute particle, stating indeed, that in actual size it is believed to be about one thousand times smaller than the hydrogen atom, which hitherto had been considered the smallest thing known to science. But we have now to offer a seemingly paradoxical modification of this statement. It is true that in mass or weight the electron is a thousand times smaller than the hydrogen atom, yet at the same time it may be conceived that the limits of space which the electron occupies are indefinitely large. In a word, it is conceived (by Professor J. J. Thomson, who is the chief path-breaker in this field) that the electron is in reality a sort of infinitesimal magnet, having two poles joined by lines or tubes of magnetic force (the so-called Faraday tube), which lines or tubes are of indefinite number and extent; precisely as, on a large scale, our terrestrial globe is such a magnet supplied with such an indefinite magnetic field. That the mass of the electron is so infinitesimally small is explained on the assumption that this mass is due to a certain amount of universal ether which is bound up with the tubes where they are thickest; close to the point in space from which they radiate, which point in space constitutes the focus of the tangible electron.

It will require some close thinking on the part of the reader to gain a clear mental picture of this conception of the electron; but the result is worth the effort. When you can clearly conceive all matter as composed of electrons, each one of which cobwebs space with its system of magnetic tubes, you will at least have a tangible picture in mind of a possible explanation of the forces of cohesion and gravitation—in fact, of all the observed cases of seeming action at a distance. If at first blush the conception of space as filled with an interminable meshwork of lines of force seems to involve us in a hopeless mental tangle, it should be recalled that the existence of an infinity of such magnetic lines joining the poles of the earth may be demonstrated at any time by the observation of a compass, yet that these do not in any way interfere with the play of other familiar forces. There is nothing unthinkable, then, in the supposition that there are myriads of minor magnetic centres exerting lesser degrees of force throughout the same space.

All that can be suggested as to the actual nature of the Faraday tubes is that they perhaps represent a condition of the ether. This, obviously, is heaping hypothesis upon hypothesis. Yet it should be understood that the hypothesis of the magnetic electron as the basis of matter, has received an amount of experimental support that has raised it at least to the level of a working theory. Should that theory be demonstrated to be true, we shall apparently be forced to conclude not merely that electricity is present everywhere in nature, but that, in the last analysis, there is absolutely no tangible thing other than electricity in all the universe.

HOW ELECTRICITY IS DEVELOPED

Turning from this very startling theoretical conclusion to the practicalities, let us inquire how electricity—which apparently exists, as it were, in embryo everywhere—can be made manifest. In so doing we shall discover that there are varying types of electricity, yet that these have a singular uniformity as to their essential properties. As usually divided—and the classification answers particularly well from the standpoint of the worker—electricity is spoken of as either statical or dynamical. The words themselves are suggestive of the essential difference between the two types. Statical electricity produces very striking manifestations. We have already spoken of it as theoretically due to the conditions of the electrons at rest. It must be understood, however, that the statical electricity will, if given opportunity, seek to escape from any given location to another location, under certain conditions, somewhat as water which is stored up in a reservoir will, when opportunity offers, flow down to a lower level. The pent-up static electricity has, like the water in the reservoir, a store of potential energy. The physicist speaks of it as having high tension. In passing to a condition of lower tension, the statical electricity may give up a large portion of its energy.

If, for example, on a winter day in a cold climate, you walk briskly along a wool carpet, the friction of your feet with the carpet generates a store of statical electricity, which immediately passes over the entire surface of your body. If now you touch another person or a metal conductor, such as a steam radiator or a gas pipe, a brilliant spark jumps from your finger, and you experience what is spoken of as an electrical shock. If the day is very cold, and the air consequently very dry, and if you will take pains to rub your feet vigorously or slide along the carpet, you may light a gas jet with the spark which will spring from your finger to the tip of the jet, provided the latter is of metal or other conducting substance; and even if you attempt to avoid the friction between your feet and the carpet as much as possible, you may be constantly annoyed by receiving a shock whenever you touch any conductor, since, in spite of your efforts, the necessary amount of friction sufficed to generate a store of statical electricity.

An illustration of the development of this same form of electricity, on a large scale, is supplied by the familiar statical machine, which consists of a large circle of glass, so adjusted that it may be revolved rapidly against a suitable friction producer. With such a machine a powerful statical current is produced, capable of generating a spark that may be many inches or even several feet in length,—a veritable flash of lightning. It is with such a supply of electricity conducted through a vacuum tube that the cathode ray and the Roentgen ray are produced.