With such a noiseless conning-tower the submersible can cruise about on foggy nights, or when the waves are just high enough to make a disturbance on the surface, running with the top of the conning-tower open so as to secure good ventilation as long as possible, until the enemy is nearly within striking distance. As the target is approached the conning-tower must be closed, the protruding top sunk lower and lower in the water, and finally completely submerged, nothing appearing at the surface but the periscope tube just above the waves. With the aid of this instrument the target may still be seen distinctly, but the arc of vision is limited, and guessing the distance or rate of speed of the target is very difficult. Nevertheless, by estimating the distance before submerging, and knowing the rate of speed of his little craft, the submarine gunner may still get his range and find his target. If the waves are at all high, this is very difficult, as the water, slopping over the periscope, obscures the vision for several seconds at a time and is very distracting. But some experiments carried on during the summer of 1908 show that, even in broad daylight, it is no easy matter for a battle-ship to detect the approach of submarines until well within torpedo range, even when an attack is expected.
In these experiments the United States cruiser "Yankee" in Buzzard's Bay was attacked by five submarines of the most recent type. The "Yankee" remained stationary expecting the attack, but to offset this disadvantage the crew was fully aware of the exact time that the attack was to be made. Indeed the officers of the cruiser had watched the submarines steam away until they disappeared. When twenty miles from the "Yankee" the five submarines submerged and headed for the cruiser, making observations at intervals by means of the periscope.
The day was perfectly clear, and all on board the "Yankee" were keenly watching for the expected submarines. Yet the first intimation they had of the proximity of the diving boats was the striking of five torpedoes against the cruiser's hull. Each submarine had scored a bull's-eye. Not content with this success, the submarines repeated the attack from a nearer point, again scoring five hits before their presence was detected.
One great obstacle to successful submarine navigation on an extended scale is the difficulty of keeping a supply of air not only for the use of the crew, but for the engines. Any really powerful engine, either steam or gas, consumes an enormous amount of air. This is not true, of course, of the storage batteries which furnish the power for running while submerged, but these, at best, are but feeble generators of energy, although Edison's recent improvements may materially improve their power. If gasoline engines could be used during submergence a far greater speed would be acquired; but this is out of the question, as such engines would consume the air supply of the little boat far too rapidly. The compromise, now adopted universally, is to use gasoline motors while running at the surface or partly submerged, when the conning-tower is open, utilizing part of their energy meanwhile to charge the storage batteries.
It is evident, therefore, that no great speed can be expected of the submarine in its present state; and in point of fact the largest type is able to develop only about ten or eleven knots when submerged, and fifteen while at the surface—far below the speed of any other type of war vessel. But the experimental attacks upon the "Yankee" prove that they are dangerous fighting craft, and a recent voyage by a flotilla of Italian submersibles shows that such boats are no longer harbor-locked vessels. In 1908 the Italian flotilla in question made a voyage from Venice to Spezia, a distance of thirteen hundred miles, without assistance from auxiliary boats. About the same time a British submarine flotilla, on a three-hundred mile trip, remained submerged for forty consecutive hours. The depth of the submergence in this case was only a few feet, but great depths may be reached with relative safety. In one test a Lake boat carrying her crew sank to a depth of one hundred and thirty-eight feet, returning to the surface in a few minutes. At another time the "Octopus," without her crew, was lowered to a depth of two hundred and five feet, sustaining a pressure of fifteen thousand tons, without injury.
A FLEET OF BRITISH SUB-MARINES MANŒUVERING AT THE SURFACE.
Such performances as these are thought-provocative, to say the least. Submarine boats that can hit the target without being detected, go on cruises unattended for more than a thousand miles, and remain submerged for more than a day and a half, must be classed as efficient engines of warfare.
Since the submersible is designed to spend most of its time on the surface of the water like an ordinary boat, it must have considerable buoyancy, but it must also have some means of getting rid of this buoyancy quickly when submergence is necessary. The submarine proper has only from five to eight per cent. buoyancy, while some of the submersibles have twenty-five per cent. or more. With such boats of the ordinary size some fifty tons of water must be admitted before bringing them to a condition in which they can be submerged; but this can be done very quickly. One of the submarines of the U. S. fleet in an actual test filled her ballast tanks and dived to a depth of twenty feet in four minutes and twenty seconds.