MINES TO GREAT DEPTHS.

Case V.Vertical or horizontal deposits, the only way of reaching which is by a vertical shaft.
Case VI.Inclined deposits. In such cases the alternatives are a vertical or a compound shaft.

Case I.—Although for logical arrangement tunnel entry has been given first place, to save repetition it is proposed to consider it later. With few exceptions, tunnels are a temporary expedient in the mine, which must sooner or later be opened by a shaft.

Case II. Vertical or Horizontal Deposits.—These require no discussion as to manner of entry. There is no justifiable alternative to a vertical shaft (Fig. 4).

Fig. 4.—Cross-sections showing entry to vertical or horizontal deposits. Case II.
Fig. 5.—Cross-section showing alternative shafts to inclined deposit to be worked from surface. Case III.

Case III. Inclined Deposits which are intended to be worked from the Outcrop, or from near It (Fig. 5).—The choice of inclined or vertical shaft is dependent upon relative cost of construction, subsequent operation, and the useful life of the shaft, and these matters are largely governed by the degree of dip. Assuming a shaft of the same size in either alternative, the comparative cost per foot of sinking is dependent largely on the breaking facilities of the rock under the different directions of attack. In this, the angles of the bedding or joint planes to the direction of the shaft outweigh other factors. The shaft which takes the greatest advantage of such lines of breaking weakness will be the cheapest per foot to sink. In South African experience, where inclined shafts are sunk parallel to the bedding planes of hard quartzites, the cost per foot appears to be in favor of the incline. On the other hand, sinking shafts across tight schists seems to be more advantageous than parallel to the bedding planes, and inclines following the dip cost more per foot than vertical shafts.

An inclined shaft requires more footage to reach a given point of depth, and therefore it would entail a greater total expense than a vertical shaft, assuming they cost the same per foot. The excess amount will be represented by the extra length, and this will depend upon the flatness of the dip. With vertical shafts, however, crosscuts to the deposit are necessary. In a comparative view, therefore, the cost of the crosscuts must be included with that of the vertical shaft, as they would be almost wholly saved in an incline following near the ore.

The factor of useful life for the shaft enters in deciding as to the advisability of vertical shafts on inclined deposits, from the fact that at some depth one of two alternatives has to be chosen. The vertical shaft, when it reaches a point below the deposit where the crosscuts are too long (C, Fig. 5), either becomes useless, or must be turned on an incline at the intersection with the ore (B). The first alternative means ultimately a complete loss of the shaft for working purposes. The latter has the disadvantage that the bend interferes slightly with haulage.

The following table will indicate an hypothetical extreme case,—not infrequently met. In it a vertical shaft 1,500 feet in depth is taken as cutting the deposit at the depth of 750 feet, the most favored position so far as aggregate length of crosscuts is concerned. The cost of crosscutting is taken at $20 per foot and that of sinking the vertical shaft at $75 per foot. The incline is assumed for two cases at $75 and $100 per foot respectively. The stoping height upon the ore between levels is counted at 125 feet.