Is it possible to perceive temporal relations as sensory qualities as we perceive colors, tones, tastes, and smells as sensory qualities? We certainly lack a sense organ of time. But aside from this, it seems impossible to perceive duration at its beginning, when the end is not yet known; impossible to perceive it at the end, when its beginning no longer exists and can only be recalled in memory. It seems equally impossible to get direct knowledge of a spatial relation. Imagine one particular point a of the skin or the retina of the eye. If this is stimulated, our mind receives a definite impression of touch or color, but no indication of or reference to any other point, since no other point is stimulated. Let the same be true for the point b. How, then, if a and b are stimulated simultaneously, can the mind receive an impression of distance between the two points, since there is no such consciousness in the perception of either of them? If the mere fact of an objective distance between the stimulated neurons were a sufficient explanation, then tones too should be localized differently.
Those who took these objections seriously tried to think of some means by which the objective, but not directly impressive, spatial relations could become known to the mind. It was suggested that the almost unceasing movements of the eyes and fingers, the chief organs of space perception, might have significance in this connection; that perhaps the kinesthetic sensations of eye and finger movement, being added to the visual or tactual impressions, made up the consciousness of spatial relationship.
All attempts, however, to prove the correctness of this and similar theories by applying them to the details of special experience, have failed. While there is no doubt that movements of our eyes and fingers are of great importance for the development and extension of the spatial consciousness in the individual as well as in the race, they are not the source from which springs the individual’s ability to perceive spatial relationship. The fundamental part of our ability of spatial perception is inborn, just as our ability to perceive light or blueness or cold is inborn. From this inborn capacity for spatial perception the individual’s delicate and elaborate sense of space is derived.
The most convincing proof that there is an innate capacity for spatial perception, is the spatial consciousness of persons born blind, to whom an operation has given eyesight. The crystalline lenses of these persons have been as little transparent as ground glass, so that they have been unable to recognize any outlines of things. Nevertheless, they make spatial distinctions immediately after the operation for removal of the lens. Of course they cannot, without further experience, tell that a round thing is the ball with which they have been familiar through the sense of touch, or a long and narrow thing a walking stick. But they immediately perceive the round thing as something different from the long and narrow thing, without any tendency to confuse them. Spatial extent is therefore an attribute of visual and tactual sensation as brightness or darkness is an attribute of visual sensation, and mellowness or shrillness an attribute of tone; with this difference only, that spatial extent is not restricted to one sense, but is common to visual and cutaneous sensations. That this is founded on some kind of similarity of these senses cannot be doubted. But this similarity is to be looked for in structural peculiarities of the nerve centers, not in accessory mental states serving as special agents of spatial consciousness.
Very much the same is the case with time. Let us admit that the temporal consciousness of our ordinary life is largely mediated by accessory sensations and images. Minutes, hours, days, weeks, are not experienced directly as properties of sense perception, but are extensions of simpler experiences. But such extensions would be impossible if duration and succession were not, somewhere in our mental life, direct experiences. They are direct experiences in some very brief temporal perceptions occupying, say, only a fraction of a second. The flash of a lighthouse signal, the quick succession of sounds when a person knocks at a door, are perceived as having temporal attributes without any mediation by conscious states acting as agents. The temporal attributes are elements of perception no less direct than the intensity of the light or of the sound. The same holds for all other sensations. Time is an attribute common to all. But here, as in space, we cannot tell exactly in what respect all senses are similar so far as the nervous processes are concerned. It seems that these processes or their after effects continue a certain time after the stimulation has ceased.
Another attribute common to all sense impressions is the belonging-together of sensations, the unity in variety, so to speak. The most striking example is the relationship of tones in harmony and melody. Tones of certain comparatively simple ratios of vibration belong together in a higher degree than others. We cannot explain this by reference to conscious agents mediating the effect. It is a fundamental attribute of each tonal combination, the conscious effect of our inherited nature. It is a property of sense, not of thought.
In other cases our consciousness of relationship is indirect, mediated by other conscious agents; for instance, when I group together voluntarily four or five adjoining holes of a sieve and perceive them as a unit. This grouping together would be impossible if the mind did not possess the native ability to perceive a number of sensational elements as a unit without altogether losing the consciousness of variety. It is a mere consequence of our inborn nature when we perceive as such units, for example, an animal romping among unchanging surroundings, a picket fence divided into groups by the fence posts, a familiar compound perfume, a dish made up of several familiar food substances. The same holds for successive elements. We could never perceive tones or noises in various rhythm forms if our mind did not possess the native ability to perceive a number of successive elements of sensation under certain conditions as a sensory unit.
Our numerical concepts are obviously only abstract symbols for units containing each a certain variety of elements.
[4.] Sensation and Stimulus
It is most interesting to observe the astonishing absolute sensitiveness of some of our senses, that is, their ability to respond to exceedingly small stimuli. It has been a difficult task to design physical instruments as sensitive to sound as the ear. It has not been possible, thus far, to surpass the ear. The sensitiveness of the eye to the faintest light is estimated to be a hundred times that of the most sensitive photographic plates. Remember what a long exposure is necessary to photograph things in a rather dark room; but the eye takes a snap shot, so to speak, of a star of the fifth magnitude, or of a landscape in diffused moonlight. Man’s organ of smell is far inferior to that of many animals. Nevertheless a trace of tobacco smoke or musk in the air whose presence no chemist could detect is easily perceived through the nose. A gram is about one twenty-eighth of an ounce; a milligram is one thousandth of a gram. One millionth of a milligram of an odorous substance is sufficient to affect the organ of smell. Taste also is sensitive, particularly when supported, as in tasting wine or tea, by smell. The cutaneous and kinesthetic senses, on the other hand, are not very sensitive. A weak pressure, a small weight, a slight tremor of our limbs, a spatial extent, can be detected much more readily by delicate instruments than by our fingers or our kinesthetic organs.