Very important is the range of perceptibility. Our measuring laboratory instruments are, as a rule, adapted only to a small range. To weigh a heavy thing, like a stack of hay, we have to use a balance differing from that used by the prescription druggist. The watchmaker’s tools are much like those of the machinist, but neither could use the other’s tools. Nature cannot well provide separate sets of tools for delicate and gross work. With our hand we estimate the weight of ounces, pounds, and hundredweights. The same ear which perceives a falling leaf can be exposed to the thunder of cannon without ceasing to respond in its normal way. The eye which perceives a small fraction of the light of a firefly, can look at the sun somewhat covered by mist, radiating light many million times as intense. No laboratory instrument has an equal range of applicability.

This wide range of usefulness is made possible partly by purely mechanical provisions, partly by a special law of nervous activity usually called Weber’s law. The iris of the eye with pupil in the center is a readily changeable diaphragm. The stronger the external light, the smaller the pupil, and the reverse; so that the eye is capable of functioning at a stronger and also at a fainter illumination than it could function if the width of the pupil were of a medium, unchangeable diameter. The nose can smell faint odors better if larger quantities of the odorous substances are by sniffing brought into contact with the organ. Too strong odors are kept away by blowing out the air.

More important, however, than such mechanical devices is the effect of Weber’s law. If a stimulus is increased, the nervous excitation is also increased,—not absolutely, but only relatively to the stimulus before the increase. Suppose an oil lamp of ten candle power needs an addition of a two candle power light to make me observe that the illumination has changed. Nevertheless I shall not be able to observe a change of illumination if to an incandescent gas light of sixty candles two candles are added. The addition must be in proportion to the stimulus. Since sixty is six times ten and twelve is six times two, twelve candles must be added to make me observe the difference in illumination. To an arc light of two thousand candles four hundred have to be added to obtain the same result. If a postal clerk is able to recognize that a letter which he weighs on his hand and which is one twentieth heavier than an ounce, requires more than the one postage stamp attached to it, he will probably be found capable of observing in the same manner that a package of newspapers prepaid for one pound does not have the correct number of stamps if it is actually one twentieth heavier than a pound.

Another way of speaking of the law is this: If we imagine a definite stimulus successively increased by such amounts that the change of the sensation is each time just as noticeable as it was the last time, the added amounts of the stimulus are a geometrical progression. Let us express the fact that the change of the sensation can always be noticed with the same ease, by saying that the additions to the sensation are an arithmetical progression. We can then state Weber’s law in these simple words: If the sensation is to increase in arithmetical progression, the stimulus must increase in geometrical progression. This statement is mathematically identical with the most widely adopted statement of the law, namely, that the sensation is proportional to the logarithm of the stimulus.

The practical result of the law in our mental life is this: The mind is informed of a further increase in the intensity of the stimulus (however great this intensity may have become before this last increase) without having to respond to the absolute intensity of the stimulus with a correspondingly enormous activity of the animal organism. Thus the mind is enabled, figuratively speaking, to weigh a stack of hay or a druggist’s herb on the same balance, to apply the same tool to a watch or to a railroad locomotive, or at least to perform its work with a much smaller number of tools than would otherwise be required. In the eye, for instance, we have, as we see below, only two different kinds of receiving instruments for faint and for strong light.

It must be mentioned, however, that Weber’s law does not hold good over an unlimited range of intensities of stimulation. If the sun were twice as bright, it would not appear brighter to the eye. For such extreme intensities the law is no longer valid. Neither is it valid for exceedingly low intensities; it makes no difference to the eye whether the wall of a dark room is illuminated from a distance of three or four yards by the glow of one cigarette or a dozen. The logarithmic equation applies only to a certain—quite large—range of medium intensities. For this range our sensitiveness to change is not only constant, but also greatest. Changes in illumination within this range can be perceived as soon as the stimulus increases or decreases by about one hundred and fiftieth.

Weber’s law has still another practical significance. A thing which we recognize by the aid of the differences in illumination of its parts (as, for example, a stone relief) or by its differences in loudness (as a rhythm beaten on a drum) always retains, not the same absolute differences, but the same quotients or proportions of the different light or tone values, however our distance from the thing varies. Weber’s law, then, enables us to perceive the identity of the thing although the absolute light or tone values have undergone change. If our nervous activities were not regulated in accordance with Weber’s law, the relief and the rhythm might become unrecognizable at a greater distance, and the relief also at dusk.

A further important relation between our mental life and the external world consists in our much greater sensitiveness to the moving and changing than to the stable and permanent. A pencil point moved over the skin under slight pressure gives us a perception of the length and direction of the line traversed more accurate than the impression received from the edge of a screwdriver pressed on the skin. On the peripheral parts of the retina the sizes and distances of things are not easily perceived; but no difficulty is experienced in noticing a waving handkerchief or a starting animal. Only the small central part of the retina is adapted to the perception of the motionless.

The same statement holds for qualitative changes. The eye is not only more sensitive to that which qualitatively changes than to that which remains unchanged; it even loses its ability to perceive things if for a considerable time no qualitative changes occur. We have seen that our eye can take snap shots under conditions which would make this impossible for the photographic camera. But for time exposures, like those used in photographing faint stars, continued for hours, our eye is not suited. The eye, in such a case, would soon cease to distinguish anything. The eye completely fixed upon one set of objects soon sees their lighter parts darker, their darker parts lighter, their colored parts less colored—more grayish—that is, it sees everything gray on gray. This is technically called adaptation of the eye. Moving the eye suddenly, we become aware of this adaptation in peculiar after-images.

Similar adaptations occur in other sense organs. Constant pressure on the skin, unchanging temperature of not extreme degree, permanent odors, cease to be perceived. But what is new, what differs from the condition which was in existence just before, is perceived at once; and because of the sense organ’s adaptation for something else, as a rule it is seen with particular intensity. This is obviously the most favorable equipment for a struggle for life. Nothing is more dangerous in battle than surprise.