The question of pressure, etc., in Class B, or semi-aqueous materials will be considered next. Of these materials, as already shown, there are two types: (a) sand in which the so-called quicksand is largely in excess of any normal voids, and (b) plastic and viscous materials. The writer believes that these materials should be treated as mixtures of solid and watery particles, in the first of which the quicksand, or aqueous portion, being virtually in suspension, may be treated as water, and it must be concluded that the action here will be similar to that of sand and pure water, giving a larger value to the properties of water than actually exists. If, for instance, it should be found that such a mixture contained 40% of pure water, the writer would estimate its pressure on or against a structure as (a) that of a moist sand standing at a steep angle of repose, and (b) that of clear water, an allowance of 60% of the total volume being assumed, and the sum of these two results giving the total pressure. Until more definite data can be obtained by experiments on a larger scale, this assumed value of 60% of the total volume for the aqueous portion may be taken for all conditions of semi-aqueous materials, except, of course, where the solid and aqueous particles may be clearly defined, the pressures being computed as described in the preceding pages.

As to the question of pure quicksand (if such there be) and other aqueous materials of Class C, such as water, oil, mercury, etc., it has already been shown that they are to be considered as liquids of their normal specific gravity; that is, in calculating the air pressure necessary to displace them, one should consider their specific gravity only, as a factor, and not the total weight per volume including any impurities which they might contain undissolved.

In order to have a clearer conception of aqueous and semi-aqueous materials and their action, they must be viewed under conditions not ordinarily apparent. For instance, ideas of so-called quicksand are largely drawn from seeing structures sinking into it, or from observing it flowing through voids in the sheeting or casing. The action of sand and water under pressure is viewed during or after a slump, when the damage is being done, or has been done, whereas the correct view-point is under static conditions, before the slump takes place.

The following is quoted from the report of Mr. C.M. Jacobs, Chief Engineer of the East River Gas Tunnel, built in 1892-93:

"We found that the material which had heretofore been firm or stiff had, under erosion, obtained a soup-like consistency, and that a huge cavity some 3 ft. wide and 26 ft. deep had been washed up toward the river bed."

This would probably be a fair description of much of the material of this class met with in such work, if compressed air had not been used. The writer believes that in soft material surrounding submerged structures the water actually contained in the voids is not infrequently, after a prolonged period of rest, cut off absolutely from its sources of pressure and that contact with these sources of pressure will not again be resumed until a leak takes place through the structure; and, even when there is a small flow or trickling of water through such material, it confines itself to certain paths or channels, and is largely excluded from the general mass.

The broad principle of the bearing power of soil has been made the subject of too many experiments and too much controversy to be considered in a paper which is intended to be a description of experiments and observed data and notes therefrom. The writer is of the opinion, however, that entirely too little attention has been given to this bearing power of the soil; that while progress has been made in our knowledge of all classes of materials for structures, very little has been done which leads to any real knowledge of the material on which the foundation rests. For instance, it is inconceivable that 1 or 2 tons may sometimes be allowed on a square foot of soft clay, while the load on firm gravel is limited to from 4 to 6 tons. The writer's practical observations have convinced him that it is frequently much safer to put four times 6 tons on a square foot of gravel than it is to put one-fourth of 2 tons on a square foot of soft clay.

In connection with the bearing power of soil, the writer also believes that too little study has been given to the questions of the lateral pressure of earth, and he desires to quote here from some experiments described in a book[F] published in England in 1876, to which his attention has recently been called. This book appears to have been intended for young people, but it is of interest to note the following quotations from a chapter entitled "Sand." This chapter begins by stating that: