"During the course of a lecture on the Suez Canal by Mr. John H. Pepper, which was delivered nightly by him at the Polytechnic Institute in London, he illustrated his lecture by some experiments designed to exhibit certain properties of sand, which had reference to the construction of the Suez Canal, and it is stated that though the properties in question were by no means to be classed among recent discoveries, the experiments were novel in form and served to interest the public audience."
Further quotation follows:
"When the Suez Canal was projected, many prophesied evil to the undertaking, from the sand in the desert being drifted by the wind into the canal, and others were apprehensive that where the canal was cut through the sand the bottom would be pushed up by the pressure on the banks * * *.
"The principle of lateral pressure may now be strikingly illustrated by taking an American wooden pail and, having previously cut a large circular hole in the bottom, this is now covered with fine tissue paper, which should be carefully pasted on to prevent the particles of sand from flowing through the small openings between the paper and the wood * * * and being placed upright and rapidly filled with sand, it may be carried about by the handle without the slightest fear of the weight of the sand breaking through the thin medium. * * *
"Probably one of the most convincing experiments is that which may be performed with a cylindrical tube 18 in. long and 2 in. in diameter, open at both ends. A piece of tissue paper is carefully pasted on one end, so that when dry no cracks or interstices are left. The tube is filled with dry sand to a height of say 12 in. In the upper part is inserted a solid plug of wood 12 in. long and of the same or very nearly the same diameter as the inside of the tube, so that it will move freely up and down like the piston of an air pump. The tube, sand, and piston being arranged as described, may now be held by an assistant and the demonstrator, taking a sledge hammer, may proceed to strike steadily on the end of the piston and, although the paper will bulge out a little, the force of the blow will not break it.
"If the assistant holding the tube allows it to jerk or rebound after each blow of the hammer, the paper may break, because air and sand are driven down by the succeeding blow, and therefore it must be held steadily so that the piston bears fairly on the sand each time.
"A still more conclusive and striking experiment may be shown with a framework of metal constructed to represent a pail, the sides of which are closed up by pasting sheets of tissue paper inside and over the lower part. As before demonstrated, when a quantity of sand is poured into the pail the tissue paper casing at the bottom does not break, but if a sufficient quantity is used the sides formed of tissue paper bulge out and usually give way in consequence of the lateral pressure exerted by the particles of sand."
The writer has made the second experiment noted, with special apparatus, and finds that with tissue paper over the bottom of a 2-in. pipe, 15 in. long, about 12 in. of sand will stand the blow of a heavy sledge hammer, transmitted through a wooden piston, at least once and sometimes two or three times, while heavy blows given with a lighter hammer have no effect at all. That this is not due in any large measure to inertia can be shown by the fact that more than 200 lb. can safely be put on top of the wooden piston. It cannot be accounted for entirely by the friction, as the removal of the paper allows the sand to drop in a mass. The explanation is that the pressure is transmitted laterally to the sides, and as the friction is directly proportional to the pressure, the load or effect of the blow is carried by the proportional increase in the friction, and any diaphragm which will carry the direct bottom load will not have its stresses largely increased by any greater loading on top.
The writer believes that experiments will show that in a sand-jack the tendency will be for the sides to burst rather than the bottom, and that the outflow from an orifice at or near the bottom is not either greatly retarded or accelerated by ordinary pressure on top. The occurrence of abnormal voids, however, causes the sand to be displaced into them.
The important consideration of this paper is that all the experiments and observations noted point conclusively to the fact that pressure is transmitted laterally through ground, most probably along or nearly parallel to the angles of repose, or in cases of rock or stiff material, along a line which, until more conclusive experiments are made, may be taken as a mean between the horizontal and vertical, or approximately 45 degrees. There is no reason to believe that this is not the case throughout the entire mass of the earth, that each cubic foot, or yard, or mile is supported or in turn supports its neighboring equivalent along such lines. The theory is not a new one, and its field is too large to encompass within the limits of a single paper, but, for practical purposes, and within the limited areas to which we must necessarily be confined, the writer believes it can be established beyond controversy as true. Certain it is that no one has yet found, in ground free from water pressure or abnormal conditions, any evidence of greater pressure at the bottom of a deep shaft or tunnel than that near the surface. Pressures due to the widening of mines beyond the limits of safety must not be taken as a controversion of this statement, as all arches have limits of safety, more especially if the useless material below the theoretical intrados is only partly supported, or is allowed to be suspended from the natural arch.