It will perhaps give you a better idea of this kind of works, which are all similar in character, if I briefly describe the largest of all, and the one with which I am best acquainted,—the Ganges Canal. This canal takes out of the River Ganges at Hurdwar, where the river leaves the hills and enters the plains, by an artificial channel 200 feet wide and 20 feet in depth, the water having a depth of 10 feet, and the fall of the bed being 2 feet per mile. This gives a volume of water of nearly 7000 cubic feet per second,—rather more than the Thames at Richmond, I think. The canal, flowing onwards, crosses three great hill torrents, two at a lower level, and one by a level crossing, and finally reaches the valley of the Solani, which it passes by an aqueduct three miles long, revetted with masonry throughout, the Solani river itself being passed by a bridge, which gives it 750 feet of waterway. After crossing this valley, 20 miles from its head, the canal arrives on level and comparatively easy ground, and pursues its way along the watershed of the country between the Ganges and Jumna rivers for another 30 miles, broken only by sundry falls and locks, and spanned by several bridges. At 50 miles from its head, it divides into two branches, of which one runs down to Futtehgurh, the main line continuing to Cawnpore, and throwing off other branches to Bolundshuhr and Etawah. From these main lines, the principal distributaries run on both sides, nearly parallel to the channel, and throwing off in their turn other minor lines,—until the whole country is covered with a network of irrigating channels, conveying the water to every field.
Thus you will see that this and other irrigating canals differ from an ordinary navigation canal, such as you have in England, in two very important particulars. First, the irrigating canal has a running stream of water which is gradually expended as we follow its course, and so its channel diminishes in size; secondly, it is dug on the highest line or watershed of the country, so as to secure a command of level for irrigating the whole area.
Now, as to the use to which this water is applied; you will understand that there are two harvests in Upper India: the rubbee, or spring harvest, which is reaped in March or April, and consists mainly of wheat; and the khurreef, or autumn harvest, which is gathered in September, October, or November, and consists of rice, sugar, Indian corn, and various tropical products. All these require steady and constant irrigation, and they get it from the spring and autumnal rains, or from wells, during the average normal seasons; but if the rains fail and the wells run dry, they are dependent on the canals, and even when the season is regular, the supplementary irrigation from the canal greatly increases the yield of the crop.
The Soil of Upper India is generally a light friable clay, excellent for wheat, but absorbing a great deal of water. In Bengal, they have a rich mud extending to a great depth, and of such fertility that three crops are often grown on it in a year. In the Central Provinces, there is the black cotton soil, which is, I believe, disintegrated trap or granite. Across the Indus, again, we have a hard stiff clay, which, though not good for wheat, is valuable for many crops when well watered. I notice this question of the soils here, because it is an important point for the engineer when projecting a new canal, for all these soils require different quantities of water.
In designing a canal such as has been described, we must fix the head at a point high up on the course of the parent river, first to get a command of level, so that our canal may run on high ground; and next because, in the higher portion of its course, the river water is free from silt, and the river bed is more stable and less liable to the caprice of the stream, which, lower down, might abandon our canal mouth.
Having fixed on the point of departure, then comes the question, how large is our channel to be? That depends, first, on the quantity of water we can get out of the river when at its lowest; secondly, on the slope or fall we give to the bed of the canal. The minimum quantity of water is, of course, determined by observation, and this has hitherto practically fixed the capacity of canals in Northern India, because the spring crop grown in the dry season is so much the more valuable of the two; but in later projects, an additional capacity of channel has been allowed, so that an extra supply of water may be admitted in the autumn, when the river has plenty to spare.
As to the fall of the bed, or the Velocity to be allowed to the artificial waterway, that is a question depending chiefly on the nature of the soil. Several of the Indian Canals have been designed with too high velocities, and the consequence has been a cutting and scouring of the banks and beds, which have seriously endangered the various masonry works in their course. On the other hand, if you give too little velocity, of course you have to go to a greater expense by making a larger channel to carry the same quantity of water, and you won’t have velocity enough to carry forward the silt held in suspension, or to prevent the growth of weeds, a serious evil in the tropics. On the whole, it seems now generally admitted that a velocity of 2½ feet per second is about what should be aimed at, though a compromise of conflicting interests, in this as in other cases, has often to be made.
When, owing to the slope of the bed being less than that of the country, the slope, if continued, would bring the canal bed too high, and embankments would have to be made, it is evident that the bed must be lowered by an artificial Fall or Rapid, made of such material and shape that the mass of water may flow over it without injury, and take up a new level below. The best forms of falls and rapids have been the subject of great discussion amongst Indian canal engineers. The Ogee fall in use on the Ganges Canal is now superseded by the Vertical fall of Colonel Dyas,—the principle of which is that the shock of the falling water is received into a cistern sunk below the bed, so as to act as an elastic cushion. A grating of wooden bars, inclined at an angle, and fixed along the crest, is also generally added. These bars act like the teeth of a comb, and, by dividing the water into filaments, greatly reduce its force.
If you want to navigate your canal, Locks must be provided as well as falls; but the difficulties of navigation up stream are very great, and the traffic on all these canals, with a current of some three miles an hour, is in a very undeveloped state. It is doubtful whether it is not impossible to combine satisfactorily the requirements of both irrigation and navigation in the same channel.
At the heads of your branches or main distributaries, Regulating gates will be required with sluices, by which the supply of water may be divided, increased, or diminished, as the case may be. A similar work will be required at the head of the canal where it leaves the river. The tail generally ends in a fall or rapid, by which the water is discharged into a river or nullah with a scour to clear away the silt.