You will find details of all these works in the Roorkee C. E. ‘Treatise.’ Besides these, Bridges of communication will be wanted for the roads crossing the canal; Rest-houses (chokees) for the use of the establishment; Escape heads for discharging surplus water; Inlets for the reception of cross-drainage; and other works.

One chief object of carrying the canal at a high level is that it should interfere as little as possible with the natural Drainage lines of the country; but it is occasionally indispensable that it should cross some of them, and it may cross them under three cases:—1. When the bed of the canal is higher than the bed of the drainage line. 2. When it is lower. 3. When the two beds are on the same level.

In the first case, the canal is carried over by an Aqueduct, which may be of masonry or iron, according to the size of the canal, and which must allow sufficient waterway underneath for the passage of the drainage line when in flood.

In the second case, the drainage line is carried over the canal by a Super-passage, which is in effect an aqueduct, only that here you have to provide waterway above the canal for the river in flood. The canal, if necessary, may be carried below it by an artificial fall of the usual construction.

The third case rarely occurs in practice, and never when it can possibly be avoided—there are the same objections to it as in the case of a Level crossing on a railway. When it has to be done, the method of doing it may be understood by an explanation of the Rutmoo level-crossing on the Ganges Canal at Dhunowrie, six miles above Roorkee. A regulating bridge, with sluices, is fixed across the Canal, just below the junction. A series of flood-gates hung between piers is fixed across the Rutmoo, on the down-stream side of the canal; these gates fall outwards by a hinge at the bottom, and are held upright by a catch, which can be easily knocked out, and when thus held up, they retain the canal at its normal level. When the Rutmoo is in flood, the Canal sluice-gates are lowered to prevent the flood water rushing down the canal, and choking it with silt or débris. At the same time, the Rutmoo flood-gates are lowered by knocking out the catches, and the whole flood water pours across the canal, and flows down its own channel. When the flood is over, the sluices are raised, and the flood-gates also one by one, the pressure of the water being taken off by dropping planks down grooves in front, provided for that purpose. Such a work of course requires the presence of an establishment to manage it, and is very liable to be damaged by carelessness on the sudden occurrence of a flood.

Well—the canal having been made and filled with water, how are we to get the water into the fields? First, it flows down the main distributaries, and then into secondary channels, which are laid out at proper slopes, and of a size varying according to the amount of water and the area to be watered. From these it is passed by pipes of wood, iron, or earthenware, under the banks on to the fields, which are divided into squares (kyarees), into which the water is passed seriatim.

As there is generally less water than is required, village watercourses are all filled in their turns; thus one set will be filled on three days of the week, and another set on three other days, and so on. The water rate is levied by the canal officer according to the area irrigated, and the kind of crop taking it, as some crops want more water than others, and are also better able to pay for it. Such a system is obviously open to many objections, for it entails endless labour in measurement, perpetual watchfulness, and much dispute and interference, besides great waste. Some system has therefore long been sought by which the water should be measured out at the head of the distributary channel or village watercourse, and charged off like beer or wine. Hitherto, however, all attempts to do this in India have failed; chiefly, because we cannot find any practical machine that will not get out of order and cannot be tampered with, by which a uniform discharge may be secured in a given time under a varying head of pressure. Could this be done, it is obvious that if a head or opening of a given capacity were left open for a certain time, we should know exactly how many cubic feet of water had been sent to a particular village. Lieut. Carroll, Royal Engineers, a very clever and promising officer, invented a module (as it is called), which you will find described in the ‘Treatise,’ and which has been the nearest approach to a machine of the above kind.

By comparison of the discharge of his canal at different points and measurement of his irrigated areas, it is obvious that the canal officer can collect data for determining what is styled “the irrigating duty per cubic foot.” This varies much with the soil, the rate of evaporation and other data, but on the best-managed canals, will amount to the irrigation of 300 acres for each cubic foot per second of water discharged at the main head. This is the rate on the Eastern Jumna Canals; on others it is not nearly so high, and in new projects about 200 are usually assumed. There are various other statistical data for canals of great value, which you will find treated of in the ‘Professional Papers’ and the Roorkee ‘Treatise.’

In Southern India, the canals are of less elaborate construction, owing to the more permanent character of the rivers in the lower portions of their course, and to the abundance of excellent stone found there, while in Northern India we have to be content with brick. The chief object of engineering skill in a Madras system of canals is the Anicut or Weir thrown across the river at the point of departure, by which a head of water is secured for the supply of the canals. Many of these weirs are elaborate and costly affairs—that over the Godavery is a mile and a half long, and the weir over the Soane, now under construction, is little less. I show you on the plan the one over the Kistna, which is a good example of its kind. You will see that the body is composed of rubble stone, defended by ashlar from the action of the water, and resting partly on shallow wells, and partly on the bed of the river itself. This shallow character of foundations on sandy beds, to which I have already alluded in a former lecture, is certainly a peculiarity of Southern Indian engineering; but you will see the long slope or apron of stone in rear of the weir, where the action of the water is most severely felt after being checked in its onward flow, and caused to whirl and scour. Very severe action takes place here for some time after the weir is built, and large quantities of loose rough stone are thrown in from time to time to fill up all gaps in the slope, until the whole work has become firm. Moreover, the sand in these rivers is of a coarser texture than that in Upper India, which, when saturated with water, becomes a mere quicksand, which would swallow up a much greater quantity of stone than the other. The weir, you will observe, is provided with sluices, by which the accumulated silt in front of the heads of the canals may be scoured through the body of the work, these sluice-heads for the supply of the canals on both banks of the river being built at the two ends of the weir. This system has generally been applied to the deltas of the Madras rivers, and the more gentle slope of the country has enabled these canals to be largely used for navigation as well, to the great advantage of the traffic; the fall of the bed is often only six inches per mile, or even less.

But besides its canals, Southern India, as well as Central and Western India, make enormous use of Tanks or reservoirs for the purpose of irrigation, the undulating and broken nature of the country as clearly indicating their use, as the flat plains of Northern India appear to demand canals. Many of these tanks have been in use for ages, and in the single province of Mysore alone there are not less than 30,000; hence, of course, they vary much in size, from those with an area of a few square yards up to those which contain several square miles, and which form artificial lakes on which you can navigate. The revenue of the country depends on the maintenance of these tanks, as in the case of canals elsewhere, and the chief duty of the Madras engineers is their inspection and repair, in concert with the civil officials of the district.