[Who is right? According to the principle of relativity a decision on this question is absolutely impossible. Both parties are right from their own points of view; and we must admit that two events in two different places may be simultaneous for certain observers, and yet not simultaneous for other observers who move with respect to the first ones. There is no contradiction in this statement, although it is not in accordance with common opinion, which believes simultaneousness to be something absolute. But this common opinion lacks foundation. It cannot be proved by direct perception, for simultaneity of events can be perceived directly,][24] [and in a manner involving none of our arbitrary assumptions,]* [only if they happen at the same place; if the events are distant from each other, their simultaneity or succession can be stated only through some method of communicating by signals. There is no logical reason why such a method should not lead to different results for observers who move with regard to one another.

From what we have said, it follows immediately that in the new theory not only the concept of simultaneousness but also that of duration is revealed as dependent on the motion of the observer.][24] [Demonstration of this should be superfluous; it ought to be plain without argument that if two observers cannot agree whether two instants are the same instant or not, they cannot agree on the interval of time between instants. In the very example which we have already examined, one observer says that a certain time-interval is zero, and another gives it a value different from zero. The same thing happens whenever the observers are in relative motion.]* [Two physicists who measure the duration of a physical process will not obtain the same result if they are in relative motion with regard to one another.

They will also find different results for the length of a body. An observer who wants to measure the length of a body which is moving past him must in one way or another hold a measuring rod parallel to its motion and mark those points on his rod with which the ends of the body come into simultaneous coincidence. The distance between the two marks will then indicate the length of the body. But if the two markings are simultaneous for one observer, they will not be so for another one who moves with a different velocity, or who is at rest, with regard to the body under observation. He will have to ascribe a different length to it. And there will be no sense in asking which of them is right: length is a purely relative concept, just as well as duration.][24]

The Relativity of Time and Space

[The degree to which distance and time become relative instead of absolute quantities under the Special Theory of Relativity can be stated very definitely. In the first place, we must point out that the relativity of lengths applies with full force only to lengths that lie parallel to the direction of relative motion. Those that lie exactly perpendicular to that direction come out the same for both observers; those that lie obliquely to it show an effect, depending upon the angle, which of course becomes greater and greater as the direction of parallelism is approached.

The magnitude of the effect is easily demonstrated, but with this demonstration we do not need to be concerned here. It turns out that if an observer moving with a system finds that a certain time interval in the system is T seconds and that a certain length in the system is L inches, then an observer moving parallel with L and with a velocity v relative to the system will find for these the respective values

and