How the foregoing Causes deflect Ocean-currents.—A high condition of eccentricity tends, we have seen, to produce an accumulation of snow and ice on the hemisphere whose winters occur in aphelion. This accumulation tends in turn to lower the summer temperature, to cut off the sun’s rays, and so to retard the melting of the snow. In short, it tends to produce on that hemisphere a state of glaciation. Exactly opposite effects take place on the other hemisphere, which has its winter in perihelion. There the shortness of the winters and the highness of the temperature, owing to the sun’s nearness, combine to prevent the accumulation of snow. The general result is that the one hemisphere is cooled and the other heated. This state of things now brings into play the agencies which lead to the deflection of the Gulf-stream and other great ocean-currents.
Owing to the great difference between the temperature of the equator and the poles, there is a constant flow of air from the poles to the equator. It is to this that the trade-winds owe their existence. Now as the strength of these winds, as a general rule, will depend upon the difference of temperature that may exist between the equator and higher latitudes, it follows that the trades on the cold hemisphere will be stronger than those on the warm. When the polar and temperate regions of the one hemisphere are covered to a large extent with snow and ice, the air, as we have just seen, is kept almost at the freezing-point during both summer and winter. The trades on that hemisphere will, of necessity, be exceedingly powerful; while on the other hemisphere, where there is comparatively little snow and ice, and the air is warm, the trades will, as a consequence, be weak. Suppose now the northern hemisphere to be the cold one. The north-east trade-winds of this hemisphere will far exceed in strength the south-east trade-winds of the southern hemisphere. The median-line between the trades will consequently lie to a very considerable distance to the south of the equator. We have a good example of this at the present day. The difference of temperature between the two hemispheres at present is but trifling to what it would be in the case under consideration; yet we find that the south-east trades of the Atlantic blow with greater force than the north-east trades, and the result is that the south-east trades sometimes extend to 10° or 15° N. lat., whereas the north-east trades seldom blow south of the equator. The effect of the northern trades blowing across the equator to a great distance will be to impel the warm water of the tropics over into the Southern Ocean. But this is not all; not only would the median-line of the trades be shifted southwards, but the great equatorial currents of the globe would also be shifted southwards.
Let us now consider how this would affect the Gulf-stream. The South American continent is shaped somewhat in the form of a triangle, with one of its angular corners, called Cape St. Roque, pointing eastwards. The equatorial current of the Atlantic impinges against this corner; but as the greater portion of the current lies a little to the north of the corner, it flows westward into the Gulf of Mexico and forms the Gulf-stream. A considerable portion of the water, however, strikes the land to the south of the Cape and is deflected along the shores of Brazil into the Southern Ocean, forming what is known as the Brazilian current.
Now it is perfectly obvious that the shifting of the equatorial current of the Atlantic only a few degrees to the south of its present position—a thing which would certainly take place under the conditions which we have been detailing—would turn the entire current into the Brazilian branch, and instead of flowing chiefly into the Gulf of Mexico as at present, it would all flow into the Southern Ocean, and the Gulf-stream would consequently be stopped. The stoppage of the Gulf-stream, combined with all those causes which we have just been considering, would place Europe under glacial conditions; while, at the same time, the temperature of the Southern Ocean would, in consequence of the enormous quantity of warm water received, have its temperature (already high from other causes) raised enormously.
Deflection of the Gulf-stream during the Glacial Epoch indicated by the Difference between the Clyde and Canadian Shell-beds.—That the glaciation of north-western Europe resulted to a great extent from the stoppage of the Gulf-stream may, I think, be inferred from a circumstance pointed out by the Rev. Mr. Crosskey, several years ago, in a paper read before the Glasgow Geological Society.[45] He showed that the difference between the glacial shells of Canada and those now existing in the Gulf of St. Lawrence is much less marked than the difference between the glacial shells of the Clyde beds and those now existing in the Firth. And from this he justly infers that the change of climate in Canada since the glacial epoch has been far less complete than in Scotland.
The return of the Gulf-stream has raised the mean annual temperature of our island no less than 15° above the normal, while Canada, deprived of its influence and exposed to a cold stream from polar regions, has been kept nearly as much below the normal.
Let us compare the present temperature of the two countries. In making our comparison we must, of course, compare places on the same latitude. It will not do, for example, to compare Glasgow with Montreal or Quebec, places on the latitude of the south of France and north of Italy. It will be found that the difference of temperature between the two countries is so enormous as to appear scarcely credible to those who have not examined the matter. The temperatures have all been taken from Professor Dove’s work on the “Distribution of Heat over the Surface of the Globe,” and his Tables published in the Report of the British Association for 1847.
The mean temperature of Scotland for January is about 38° F., while in some parts of Labrador, on the same latitude, and all along the central parts of North America lying to the north of Upper Canada, it is actually 10°, and in many places 13° below zero. The January temperature at the Cumberland House, which is situated on the latitude of the centre of England, is more than 13° below zero. Here is a difference of no less than 51°. The normal temperature for the month of January in the latitude of Glasgow, according to Professor Dove, is 10°. Consequently, owing to the influence of the Gulf-stream, we are 28° warmer during that month than we would otherwise be, while vast tracts of country in America are 23° colder than they should be.
The July temperature of Glasgow is 61°, while on the same latitude in Labrador and places to the west it is only 49°. Glasgow during that month is 3° above the normal temperature, while America, owing to the influence of the cold polar stream, is 9° below it. The mean annual temperature of Glasgow is nearly 50°, while in America, on the same latitude, it is only 30°, and in many places as low as 23°. The mean normal temperature for the whole year is 35°. Our mean annual temperature is therefore 15° above the normal, and that of America from 5° to 12° below it. The American winters are excessively cold, owing to the continental character of the climate, and the absence of any benefit from the Gulf-stream, while the summers, which would otherwise be warm, are, in the latitude of Glasgow, cooled down to a great extent by the cold ice from Greenland; and the consequence is, that the mean annual temperature is about 20° or 27° below that of ours. The mean annual temperature of the Gulf of St. Lawrence is as low as that of Lapland or Iceland. It is no wonder, then, that the shells which flourished in Canada during the glacial epoch have not left the gulf and the neighbouring seas.
We have good reason to believe that the climate of America during the glacial epoch was even then somewhat more severe than that of Western Europe, for the erratics of America extend as far south as latitude 40°, while on the old continent they are not found much beyond latitude 50°. This difference may have resulted from the fact that the western side of a continent is always warmer than the eastern.