There is thus, as I have said, considerable uniformity and even monotony throughout the whole range of the Outer Hebrides. I speak, however, chiefly as a geologist. An artist, no doubt, will find infinite variety, and as he wends his way by moorland, or mountain-glen, or sea-shore, scenes are constantly coming into view which he will be fain to transfer to his sketch-book. The colour-effects, too, are often surprisingly beautiful. When the rich meadow-lands of the west coast are in all their glory, they show many dazzling tints and shades, the deep tender green being dashed and flushed with yellow, and purple, and scarlet, and blue, over which the delighted eye wanders to a belt of bright sand upon the shore, and the vast azure expanse of the Atlantic beyond. Inland are the heath-clad moors, sprinkled with grey boulders and masses of barren rock, and interspersed with lakes, some of which are starred with clusters of lovely water-lilies. Behind the moorlands, again, rise the grim, bald mountains, seamed and scarred with gullies, and in their very general nakedness and sterility offering the strongest contrast to the variegated border of russet moor, and green meadow, and yellow beach that fringe the Atlantic coast.
All through the islands, indeed, the artist will come upon interesting subjects. A most impressive scene may sometimes be witnessed on crossing the North Ford, between North Uist and Benbecula. At low-water, the channel or sound between these two islands, which is five miles in breadth, disappears and leaves exposed a wide expanse of wet sand and silt, dotted with black rocks and low tangle-covered reefs and skerries. On the morning I passed over, ragged sheets of mist hung low down on the near horizon, half-obscuring and half-revealing the stony islets, and crags, and hills that lay between the ford and the Minch. Seen through such a medium, the rocks assumed the most surprising forms, sometimes towering into great peaks and cliffs, at other times breaking up, as it were, into low reefs and shoals, and anon dissolving in grey mist and vapour. At other times the thin cloud-curtain would lift, and then one fancied one saw some vast city with ponderous walls and battlements, and lofty towers and steeples, rising into the mist-wreaths that hung above it, while from many points on the Benbecula coast, where kelp was being prepared, clouds of smoke curled slowly upwards, as if from the camp-fires of some besieging army. The track of the ford winds round and about innumerable rocks, upon which a number of “natives,” each stooping solitary and silent to his or her work, were reaping the luxuriant seaweed for kelp-making. Their silence was quite in keeping with the general stillness, which would have been unbroken but for the harsh scream of the sea-birds, as they ever and anon rose scared from their favourite feeding-grounds while we plodded and plashed on our way. The artist who could successfully cope with such a scene would paint a singularly weird and suggestive picture.
But, to return to the physical features of the Long Island, what, we may ask, is the cause of that general monotony of outline to which reference has so frequently been made? At first we seem to get an answer to our question when we are told that the islands of the Outer Hebrides are composed chiefly of one and the same kind of rock. Everyone nowadays has some knowledge of the fact that the peculiar features of any given district are greatly due to the character and arrangement of the rock-masses. For example, who is not familiar with the outline of a chalk country, as distinguished from the contour of a region the rocks of which are composed, let us say, of alternating beds of limestone and sandstone and masses of old volcanic material? The chalk country, owing to the homogeneousness of its component strata, has been moulded by the action of weather and running water into an undulating region with a softly-flowing outline, while the district of composite formation has yielded unequally to the action of Time’s workers—rains, and frosts, and rivers—and so is diversified with ridge, and escarpment, and knolls, and crags. When, therefore, we learn that the Outer Hebrides are composed for the most part of the rock called gneiss and its varieties, we seem to have at once found the meaning of the uniformity and monotony. It is true that although pink and grey gneiss and schistose rocks prevail from the Butt of Lewis to Barra Head, yet there are some other varieties occasionally met with—thus soft red sandstone and conglomerate rest upon the gneissic rocks near Stornoway, but they occur nowhere else throughout the Long Island. Now and again, however, the gneiss gives place to granite, as on the west coast of Lewis near Carloway; and here and there the strata are pierced by vertical dykes and curious twisted and reticulated veins of basalt-rock. All these, however, hold but a minor and unimportant place as constituents of the islands. Gneiss is beyond question the most prevalent rock, and we seem justified in assigning the peculiar monotony of the Outer Hebridean scenery to that fact.
But when we come to examine the matter more attentively, we find that there is still some important factor wanting. We have not got quite to the solution of the question. When we study the manner in which the gneiss and gneissic rocks disintegrate and break up at the sea-coast or along the flanks of some rugged mountain-glen, we see they give rise to an irregular uneven surface. They do not naturally decompose and exfoliate into rounded dome-shaped masses, such as are so commonly met with all through the islands, but rather tend to assume the aspect of rugged tors, and peaks, and ridges. The reason for this will be more readily understood when it is learned that the gneissic rocks of the Outer Hebrides are for the most part arranged in strata, which, notwithstanding their immense antiquity—(they are the oldest rocks in Europe)—and the many changes they have undergone, are yet, as a rule, quite distinguishable. The strata are seldom or never horizontal, but are usually inclined at a high angle, either to north-east or south-west, although sometimes, as in the vicinity of Stornoway, the “dip” or inclination of the beds is to south-east. Throughout the major portion of the Long Island, however, the outcrop of the strata runs transversely across the land from south-east to north-west. Now we know that when this is the case strata of variable composition and character give rise to long escarpments and intervening hollows—the escarpments marking the outcrops of the harder and more durable beds, and the hollows those strata that are softer and more easily eroded by the action of the denuding forces, water and frost. When the dip of the strata is north-east we expect the escarpments to face the south-west, and the reverse will be the case when the strata incline in the opposite direction.
Seeing then that the Outer Hebrides are composed chiefly of gneissic rocks and schists which yield unequally to the weather, and which, in the course of time, would naturally give rise to lines of sharp-edged escarpments or ridges and intervening hollows, with now and again massive hills and mountains showing great cliffs and a generally broken and irregular outline, why is it that such rugged features are so seldom present at low levels, and are only conspicuous at the very highest elevations? The rocks of the Outer Hebrides are of immense antiquity, and there has therefore been time enough for them to assume the irregular contour which we might have expected. But in place of sharp-rimmed escarpments, and tors, and broken shattered ridges, we see everywhere a rounded and smoothly-flowing configuration which prevails up to a height of 1600 feet or thereabout, above which the rocks take on the rugged appearance which is natural to them. By what magic have the strata at the lower levels escaped in such large measure from the action of rain and frost, which have furrowed and shattered the higher mountain-tops?
I have said that long lines of escarpment and ridges, corresponding to the outcrops of the harder and more durable strata, are not apparent in these islands. A trained eye, however, is not long in discovering that such features, although masked and obscured, are yet really present. The round-backed rocks are drawn out, as it were, in one persistent direction, which always agrees with the strike or outcrop of the strata; and in many districts one notices also that long hollows traverse the land from south-east to north-west in the same way. Such alternating hollows and rounded ridges are very conspicuous in Barra and the smaller islands to the south, and they may likewise be noted in most of the larger islands also. Looking at these and other features, the geologist has no hesitation in concluding that the whole of the islands have been subjected to some powerful abrading force, which has succeeded to a large extent in obliterating the primary configuration of the land. The rough ridges have been rounded off, the sharp escarpments have been bevelled, the abrupt tors and peaks have been smoothed down. Here and there, it is true, the dome-shaped rock-masses are beginning again to break up under the action of the weather so as to resume their original irregular configuration. And, doubtless, after the lapse of many ages, rain and frost will gradually succeed in destroying the present characteristic flowing outlines, and the islands will then revert to their former condition, and rugged escarpments, sharp peaks, and rough broken hummocks and tors will again become the rule. But for a long time to come these grey Western Islands will continue to present us with some of the most instructive examples of rounded and mammillated rock-masses to be met with in Europe. From Barra Head in Bearnarey to the Butt of Lewis we are constantly confronted by proofs of the former presence of that mysterious abrading power, which has accommodated itself to all the sinuosities of the ground, so that from the sea-level up to a height of 1600 feet at least, the eye rests almost everywhere upon bare round-backed rocks and smoothed surfaces.
II.
In the preceding article I have described the peculiar configuration of the Long Island—rounded and flowing for the most part—and have pointed out how that softened outline is not such as the rocks would naturally assume under the influence of the ordinary agents of erosion with which we are familiar in this country. The present contour has superseded an older set of features, which, although highly modified or disguised, and often well-nigh obliterated, are yet capable of being traced, and are, no doubt, the conformation assumed by the rocks under the long-continued action of rain and frost and running water. We have now to inquire what it was that removed or softened down the primal configuration I refer to, and gave to the islands their present monotonous, undulating contour.
Any one fresh from the glacier-valleys of Switzerland or Norway could have little doubt as to the cause of the transformation. The smoothed and rounded masses of the Outer Hebrides are so exactly paralleled by the ice-worn, dome-shaped rocks over which a glacier has flowed, that our visitor would have small hesitation in ascribing to them a similar origin; and the presence of the countless perched blocks and boulders which are scattered broadcast over the islands would tend to confirm him in his belief. A closer inspection of the phenomena would soon banish all doubt from his mind; for, on the less-weathered surfaces, he would detect those long parallel scratches and furrows which are the sure signs of glacial action, while, in the hollows and over the low-grounds, he would be confronted with that peculiar deposit of clay and sand and glaciated stones and boulders which are dragged on underneath flowing ice.
Having satisfied ourselves that the rounded outline of the ground is the result of former glacial action, our next step is to discover, if we can, in what direction the abrading agent moved. Did the ice, as we might have supposed, come out of the mountain-valleys and overflow the low country? If that had been the case, then we should expect to find the glacial markings radiating outwards in all directions from the higher elevations. Thus the low-grounds of Uig, in Lewis, should give evidence of having been overflowed by ice coming from the Forest of Harris; the undulating, rocky, and lake-dappled region that extends between Loch Roag and Loch Erisort should be abraded and striated from south-west to north-east. Instead of this, however, the movement has clearly been from south-east to north-west. All the prominent rock-faces that look towards the Minch have been smoothed off and rounded, while in their rear the marks of rubbing and abrading are much less conspicuous. It is evident that the south-east exposure has borne the full brunt of the ice-grinding—the surfaces that are turned in the opposite direction, or towards the Atlantic, having been in a measure protected or sheltered by their position. The striations or scratches that are seen upon the less-weathered surfaces point invariably towards the north-west, and from their character and the mode in which they have been graved upon the rock, we are left in no doubt as to the trend of the old ice-plough—which was clearly from south-east to north-west. Nor is it only the low-grounds that are marked in this direction. Ascend Suaina (1300 feet), and you shall find it showing evident signs of having been abraded all over, from base to summit. The same, indeed, is the case with all the hills that stretch from sea to sea between Uig and Loch Seaforth. Beinn Mheadonach, Ceann Resort, Griosamul, and Liuthaid, are all strongly glaciated from south-east to north-west.