If this general conclusion holds good, it is obvious that the oceanic troughs of early geological times could not have been so deep as they are now. During the Palæozoic period, the most continuous areas of dry land, as we have seen, were distributed over the northern parts of our hemisphere, while, further south, groups of islands indicated the continuation of the continental plateau. Doubtless South America, Africa, Asia, and Australia were, at that distant date, represented by similar detached areas of dry land. In a word, the primeval continental plateau was still largely under water. Judging from the character and broad distribution of the Palæozoic marine faunas the temperature of the sea was wonderfully uniform. There is certainly nothing to indicate the existence of such climatic zones as those of the present. We know very little of the terrestrial life of early Palæozoic times—the Cambro-Silurian strata are essentially marine. Land-plants, however, become more numerous in the Old Red Sandstone, and, as every one knows, they abound in the succeeding Carboniferous and Permian systems. And the testimony of these floras points to the same conclusion as that furnished by the marine faunas. The Carboniferous floras of the arctic regions, and of temperate Europe and America, not only have the same facies, but a considerable number of the species is common to both areas; while many European species occur in the Carboniferous strata of Australia and other distant lands. This common facies, and the presence of numerous cosmopolitan forms, surely indicate the former prevalence of remarkably uniform climatic conditions. The conditions, of course, need not—indeed, could not—have been absolutely uniform. At present the various climates which our globe experiences depend upon the amount of heat received directly and indirectly from the sun—oceanic and aërial currents everywhere modifying the results that are due to latitude. It cannot have been otherwise in former times. In all ages the tropics must have received more direct sun-heat than temperate and polar regions; and however much the climatic conditions of the Palæozoic era may have differed from the present—however uniformly temperature may have been distributed—still, as I have said, absolute uniformity was impossible. It was doubtless owing to the fact that the dry lands of Palæozoic times were not only much less extensive than now, but more interrupted, straggling, and insular, that the climate of the globe was so equable. Under such geographical conditions, great oceanic currents would have a much freer course than is now possible, and warm water would find its way readily across wide regions of the submerged continental plateau into the highest latitudes. The winds blowing athwart the land would everywhere be moist and warm, and no such marked differences of temperature, such as now obtain, would distinguish the arctic seas from those of much lower latitudes. At the same time, the comparatively shallow water overlying the submerged areas of the continental plateau would favour the distribution of species, and thus bring about that wide distribution of cosmopolitan forms and general similarity of facies, which are such marked features of the Palæozoic faunas. It is even quite possible that migration may have taken place here and there across the great oceanic depression itself; for it may well be doubted whether, at so early a period, the depression had sunk down to its present depth below the level of the continental plateau.

Yet, notwithstanding such facilities for migration, and the consequent similarity of facies I have referred to, the Palæozoic faunas of different regions have usually certain distinctive characters. Even at the very dawn of the era the marine faunas were already grouped into provinces, sometimes widely separated from one another, at other times closely adjacent, so that it is evident that barriers to migration here and there existed. It could hardly have been otherwise; for local and more widely-spread movements of elevation and depression took place again and again during Palæozoic times.

While the younger Palæozoic systems were being accumulated, excess of upheaval over depression resulted in the gradual increase of the land.[DK] The continental plateau came more and more to the surface, in spite of many oscillations of level. It is quite possible, nay, even probable that this persistent growth of land, and consequent modification of oceanic currents may have rendered the climatic conditions of later Palæozoic times less uniform: but, if so, such diminished uniformity has left no recognisable impress on either faunas or floras; for fossils characteristic of the Devonian and Carboniferous strata of temperate latitudes occur far within the Arctic Circle.

[DK] See footnote p. 341.

Descending to the Mesozoic era, we find that the character and distribution of marine faunas are still indicative of uniformity. There could have been little difference of temperature at that time between arctic seas and those of our own latitude. Cosmopolitan species abounded in the Jurassic waters, but were relatively less numerous in those of the Cretaceous period. Professor Neumayr maintains that already, in the Jurassic period, the climate had become differentiated into zones. This, he thinks, is indicated by the fact that coral reefs abound in the Jurassic strata of central Europe, while they are wanting in the contemporaneous deposits of boreal regions. Dr. Heilprin, on the other hand, is of opinion that this and certain other distinctive features of separate Jurassic life-provinces may not have been due to differences of temperature, but rather to varying physical conditions, such as character of the sea-bottom, depth of water, and so forth. Perhaps the safest conclusion we can come to, in the present state of the evidence, is that the climatic conditions of the Mesozoic era were, upon the whole, less obviously uniform than those of earlier ages, but that marked zones of climate like the present had not as yet been evolved. At the same time, when we consider how many great geographical revolutions took place during the period in question, we must be prepared to admit that these could hardly fail to influence the climate, and thus to have induced modifications in the distribution of faunas and floras. And probably evidence of such modifications will yet be recognised, if indeed the phenomena referred to by Neumayr be not a case in point. It may be noted, further, that while, according to many botanists, the plants of the Palæozoic periods bespeak not only uniform climatic conditions but the absence of marked seasonal changes, those of late Mesozoic times are indicative of less uniformity. The Cretaceous conifers, for example, show regular rings of growth, and betoken the existence of seasons, which were less marked, however, than is now the case.

The geographical changes of Mesozoic times were notable in many respects. The dominant features of Europe, already foreshadowed in early Palæozoic times, had become more clearly outlined before the close of the Cretaceous period. Notwithstanding many movements of depression, the chief land-areas continued to show themselves in the north and north-west. The highest grounds were the Urals, and the uplands of Scandinavia and Britain. In middle Europe the Pyrenees and the Alps were as yet inconsiderable heights, the loftiest lands in that region being those of the Harz, the Riesen Gebirge, and other tracts of Archæan and Palæozoic rocks. The lower parts of England and the great lowland plains of central Europe were sometimes submerged in the waters of a wide, shallow sea, but ever and anon elevation ensued, new lands appeared, and these waters became divided into a series of large inland seas and lakes. In the south, a deep Mediterranean sea would appear to have persisted all through the Mesozoic era—a sea of considerably greater extent, however, than the present.

While in Europe the dominant features of the continental plateau run approximately east and west, in North America they follow nearly the opposite direction. In early Mesozoic times, vast tracts of dry land extended across the northern and eastern sections of the latter area. Over the Rocky Mountain region, low lands and saline lakes appear to have stretched, while further west the area of the Great Plateau and the Pacific slope were covered by the sea. Towards the end of the Mesozoic era, the land in the far west became more continuous—a broad belt extending in the direction of the Pacific coast-line from Mexico up to high northern latitudes. In short, before the Cretaceous period closed, the major portion of North America had been evolved. A considerable tract of what is now the western margin of the continent, however, was still under water, while from the Gulf of Mexico (then much wider than now) a broad Mediterranean sea swept north and north-west through Texas and the Rocky Mountain region to communicate with the Arctic Ocean. All to the east of this inland sea was then, as it is now, dry land. Thus, up to the close of the Cretaceous period, in America and Europe alike, oceanic currents coming from the south had ready access across the primeval continental plateau to the higher latitudes. Southern Europe indeed, during Mesozoic times, was simply a great archipelago, having free communication on the one hand across the low-grounds of central and northern Russia with the arctic seas, and, on the other, across vast regions in Asia with the Indian Ocean.

Of the other great land-masses of the globe our knowledge is too limited to allow us to trace their geographical evolution with any confidence. But from the very wide distribution of Mesozoic strata in South America, Africa, Asia, and Australia, there can be no doubt that, at the time of their accumulation, enormous tracts in those regions were then under water. The land-masses, in short, were not so continuous and compact as they are at present. And although we must infer that considerable areas of Mesozoic land are now submerged, yet these cannot but bear a very small proportion to the wide regions which have been raised above the sea-level since Mesozoic times. In short, from what we do know of the geological structure of the continents in question, we can hardly doubt that they have passed through geographical revolutions of a like kind with those of Europe and North America. Everywhere over the great continental plateau elevation appears, in the long-run, to have been in excess of depression, so that, in spite of many subsidences, the tendency of the land throughout the world has been to extend its margins, and to become more and more consolidated. The Mesozoic lands were larger than those of the preceding Palæozoic era, but they were still penetrated in many places by the sea, and warm currents could make their way over wide tracts that are now raised above the sea-level. Under such circumstances approximately uniform conditions of climate could not but obtain.

Great geographical changes supervened upon the close of the Cretaceous period. North America then acquired nearly its present outline. Its Mediterranean sea had vanished, but the Gulf of Mexico still overflowed a considerably wider region than now, while a narrow margin of the Pacific border of the continent continued submerged. In Europe elevation ensued, and the sea which had overspread so much of the central and eastern portions of our Continent disappeared. Southern Europe, however, was still largely under water, while bays and inlets extended northwards into what are now the central regions of the Continent. On to the close of the Miocene period, indeed, the southern and south-eastern tracts of Europe were represented by straggling islands. In middle Cainozoic times the Alps, which had hitherto been of small importance, were considerably upheaved, as were also the Pyrenees and the Carpathians; and a subsequent great elevation of the Alpine area was effected after the Miocene period. Notwithstanding these gigantic movements, the low-lying tracts of what is now southern Europe continued to be largely submerged, and even the central regions of the Continent were now and again occupied by broad lakes, which sometimes communicated with the sea. After the elevation of the Miocene strata, these inland seas disappeared, but the Mediterranean still overflowed wider areas than it does to-day. Eventually, however, in late Pliocene times, the bed of that sea experienced considerable elevation; and it was probably at or about this stage that the Black Sea and the Sea of Asov retreated from the broad low-grounds of southern Russia, and that the inland seas and lakes of Austria-Hungary finally vanished.

The movements of upheaval, which caused the Cretaceous seas to disappear from such broad areas of the continental plateau, induced many changes in the floras and faunas of the globe. A notable break in the succession occurs between the Cretaceous and the Eocene, hardly one species of higher grade than the protozoa passing from one system to the other. In the Cainozoic deposits we are no longer confronted with numerous cosmopolitan species—the range of marine forms has become much more restricted. Nevertheless, the faunas and floras continue to be indicative of much warmer climates for arctic and temperate latitudes than now obtain. But, at the same time, differentiation of climate into zones is distinctly marked. In the early Cainozoic period, our present temperate latitudes supported a flora of decidedly tropical affinities, while the fauna of the adjacent seas had a similar character. Later on the climate of the same latitudes appears to have passed successively through sub-tropical and temperate stages. In short, a gradual lowering of the temperature is evinced by the character and distribution both of floras and faunas. The differentiation of the climate during one stage of the Cainozoic era is well illustrated by the Miocene flora. Thus, at a time when Italy was clothed with a tropical vegetation, in which palm-trees predominated, middle Europe had its extensive forests of evergreens and conifers, while in the region of the Baltic conifers and deciduous trees were the prevalent forms.