It is extremely interesting to compare this old scholastic teaching with the modern ideas of the composition of matter and especially the notions which have come to us from researches in physical chemistry in recent years. Our scientists no longer believe that we have some eighty different elements, essentially different kinds of matter, that cannot by any chance or process be changed one [{110}] into another. We have seen one form of elementary matter changing into another, helium emanations becoming radium, have heard of Professor Ramsay's transmutation of various elements, and have about come to the conclusion that in the radio-active substances we have a wonderful transmuting power. A prominent American professor of chemistry declared not long since that he would like to treat a large quantity of lead ore in order to extract from it all the silver which so constantly occurs in connection with it in the natural state, and then having put the lead ore aside for a score of years, would like to examine it again, confident that he would find traces of silver in it once more, which had developed as a consequence of the radio-activity present in the substance and which is constantly changing lead into silver in small quantities. Newton's declaration, when he saw crystals of gold in connection with copper, that gold had been developed from the copper, seemed very foolish a century ago, but no one would consider it so at the present moment.
We are prone to think that these old mediaeval philosophers accepting to some extent at least the philosopher's stone with its supposed capacity for changing baser metals into precious, and with their acceptance of the transmutation of substances, cannot have had any real scientific bent of mind. We are coming to the realization, however, that in many ways by pure reasoning, in [{111}] conjunction with such observation as they had at hand, they anticipated our most recent conclusions in very marvellous ways. We know now that radium, or at least radio-active substances, represent the philosopher's stone of the olden time. We are not surprised at the transmutation of metals and of substances, on the contrary, we are looking for it.
I remember once stating the old theory of matter and form to a distinguished professor in chemistry in this country, and he was struck by the similarity of it to what are the present accepted ideas of the composition of matter. He asked why this teaching was not more generally known. I had to tell him that in every Catholic school of philosophy, it was taught as a basic doctrine, and that far from being concealed it was the very touchstone of Catholic philosophic teaching, and had often been the subject of deprecation and contemptuous remarks on the part of those who thought that it represented somewhat foolish old-fashioned teaching handed down to us from the backwardness and abysm of time.
We have demonstrated the indestructibility of matter in modern times by experimental methods. The mediaeval schoolmen reached similar conclusions, however, by strict reasoning from the premises of observation that they had in the olden times. We may be apt to think that they knew very little about nature and the details of physical science, but that will be only because we do not [{112}] know their great books. Albertus Magnus is a typical example of a renowned teacher of the thirteenth century who was, however, at the same time a highly respected member of his order, holding important official positions in it and thoroughly honored and respected by his ecclesiastical superiors so that he was made a bishop, yet writing volumes of observation with regard to nearly every phase of physical science. A list of his books reads like a section of a catalogue of a library of physical science. I have told the story of his career in the second series of "Catholic Churchmen in Science," but the names of his volumes are sufficient to show what sort of work he was doing. He has volumes on chemistry, botany, on physics, on cosmography, on animal locomotion, on respiration, on generation and corruption, on age and death and life, on phases of psychology, the soul, sense and sensation, memory, sleep, the intellect and many another subject. Those who think that there was no attention paid to science in the Middle Ages must know nothing at all of Albertus Magnus' work.
Above all, those who talk thus are entirely ignorant of all that Roger Bacon did. Roger Bacon himself was a student of the University of Paris. He was a professor there. He corresponded with the scientists of Europe quite as frequently or at least as significantly as professors of the modern time do with each other. Students submitted their discoveries to him. We [{113}] have Peregrinus' letter to him with regard to magnetism and electricity and know of others. We have his own books, in which he treats not only the scientific problems, but inventions and applied science of all kinds. At the present time his interest in aeronautics has a special appeal to us. He was sure that men would sometime make a successful airship. He even thought that he could make one himself, but his experiments proved unsuccessful. His theory of it was very interesting. In his work "De Secretis Artis et Naturae Operibus" he writes that a machine could be constructed in which a man sitting in the centre might move wings by means of a crank and thus, quite after the fashion of birds, fly through the air. It was he who wrote that the time would come when carriages would move along the roads without men or horses to pull them. At the moment he was experimenting with gunpowder. He realized, therefore, that sometime men would harness explosives and use them for motor purposes. That is, of course, just what we are doing with gasolene.
He suggested that boats would run over the water without oars and without sails. He was anticipating our motor boat. He taught that light moves with a definite rate of velocity, though that fact was not demonstrated for several centuries after his time. He worked out most of the theory of lenses as we have it at the present time. He was sure that experiment and [{114}] observation constituted the only way by which knowledge of nature could be obtained. In this he was but following his great teacher Albertus Magnus, who insisted that in natural philosophy experiment alone brought sure knowledge; "Experimentum solum certificat in talibus." are his own words. Roger Bacon's devotion to mathematics shows how thoroughly scientific was the trend of his mind. Without mathematics he was sure that one could not reach scientific knowledge, or that what one did get was without certainty. Some of his expressions in this matter are strikingly modern. It is no wonder that his writings and teachings were so great a surprise to his generation that the Pope ordered him to write out his knowledge in books. Without this order we would not have had Roger Bacon's great works, for his vow of poverty voluntarily taken forbade him to be possessed of sufficient money to enable him to purchase writing materials, which were then very expensive.
Indeed the mathematics of the mediaeval universities is the best proof of the seriousness of their devotion to science and, may it also be said, of their success. Cantor, in his "History of Mathematics," and he is the great authority in the matter, devotes nearly 100 pages of his second volume to the mathematicians of the thirteenth century alone, two of whom, Leonard of Pisa and Jordanus Nemorarius, did so much in arithmetic, in the theory of numbers, and in geometry, [{115}] as to work a revolution in mathematics. They had great disciples like John of Holywood (probably a town near Dublin), Johannes Campanus and others. No wonder that at the end of the century Roger Bacon said, "For without mathematics nothing worth knowing in philosophy can be obtained," and again, "for he who knows not mathematics cannot know any other science; what is more, he cannot discover his own ignorance or find its proper remedy." The fourteenth and fifteenth centuries saw even more important work done. Cantor has half a dozen men in the fifteenth century to whom he devotes more than twenty-five pages each. How the place of this in mediaeval teaching can have escaped the notice of those who insist so much on the neglect of science during the Middle Ages, is hard to understand. This alone would convict them of ignorance of what they are talking about.
The educational genius of the great university century, the thirteenth, the man who influenced his contemporaries and succeeding generations more than any other, was Thomas Aquinas, to whom the Church, for his knowledge and goodness, gave the title of saint. If any further proof that these centuries were interested in science were needed, or that the universities in which he was the leading light as scholar and professor in the thirteenth century, and as the great master to whom all looked reverentially after, were developing scientific studies, it would be found in [{116}] his works. Philosophy is developed scientifically in his "Contra Gentes" and theology, scientifically in his great "Summa." It is the very austerity of the scientific qualities of these books that have made them forbidding for many modern readers, who, therefore, have failed to understand the scientific spirit of the time. St. Thomas Aquinas, however, was, as I suggested at the beginning of this, deeply interested in every form of information with regard to what we now call physical science. He evidently drank in with avidity all that had been observed with regard to living creatures and, when we come to analyze his works with care and read his books with the devotion of his own students, we find many anticipations of what is most modern in our science.
The indestructibility of matter, matter and form, that is the doctrine of the unity of the basis of matter, the conservation of energy in the sense that the forms of matter change but do not disappear, all these were commonplaces in his thought and teaching. I have recently had occasion to point out how close he came to that thought in modern biology which is probably considered to be one of our most modern contributions to the theory of evolution. It is expressed by the formula of Herbert Spencer, "Ontogeny recapitulates phylogeny." According to this the completed human being repeats in the course of its development the history of the race, that is to say, the varying phases of foetal development [{117}] in the human embryo, from the single cell in which it originates up to the perfect being as it is born into the world, retrace the history by which from the single-cell being man has gradually developed. The whole theory of evolution is supposed by many people to be modern, but of course it is not. This particular phase of it, however, is thought surely to be modern. It is sometimes spoken of as the fundamental law of biogeny. In recent years serious doubts have been thrown on it, but with that we have nothing to do here.
It is very curious to find, however, that St. Thomas, in his teaching with regard to the origin and development of the human being, says, almost exactly, what the most ardent supporters of this so-called fundamental biogenetic law proclaimed in recent years. He says that "the higher a form is in the scale of being and the farther it is removed from mere material form, the more intermediate forms must be passed through before the finally perfect form is reached. Therefore, in the generation of animal and man--these having the most perfect forms--there occur many intermediate forms in generations and consequently destruction, because the generation of one being is the destruction of another." St. Thomas does not hesitate to draw his conclusions from this doctrine without hesitation. He proclaims that the human material is first animated by a vegetative soul or principle of life, and then by an animal soul and only ultimately, when the matter has [{118}] been properly prepared for it, by a rational soul. He said: