The scientific character of the early Greek cosmology.

XIII. It is necessary to say something as to the scientific worth of the philosophy we are about to study. We have just seen that the Eastern peoples were, at the time of which we write, considerably richer than the Greeks in accumulated facts, though these facts had certainly not been observed for any scientific purpose, and their possession never suggested a revision of the primitive view of the world. The Greeks, however, saw in them something that could be turned to account, and they were never as a people slow to act on the maxim, Chacun prend son bien partout où il le trouve. The most striking monument of this spirit which has come down to us is the work of Herodotos; and the visit of Solon to Croesus which he describes, however unhistorical it may be, gives a very lively and faithful picture of it. Croesus tells Solon that he has heard much of “his wisdom and his wanderings,” and how, from love of knowledge (φιλοσοφέων), he has travelled over much land for the purpose of seeing what was to be seen (θεωρίης εἵνεκεν). The words θεωρίη, φιλοσοφίη, and ἱστορίη are, in fact, the catchwords of the time, though they had, we must remember, a somewhat different meaning from that which they were afterwards made to bear at Athens.[[42]] The idea that underlies them all may, perhaps, be best rendered in English by the word Curiosity; and it was just this great gift of curiosity, and the desire to see all the wonderful things—pyramids, inundations, and so forth—that were to be seen, which enabled the Greeks to pick up and turn to their own use such scraps of knowledge as they could come by among the barbarians. No sooner did a Greek philosopher learn half a dozen geometrical propositions, and hear that the phenomena of the heavens recur in cycles, than he set to work to look for law everywhere in nature, and, with a splendid audacity, almost amounting to ὕβρις, to construct a system of the universe. We may smile, if we please, at the strange medley of childish fancy and true scientific insight which these Titanic efforts display, and sometimes we feel disposed to sympathise with the sages of the day who warned their more daring contemporaries “to think the thoughts befitting man’s estate” (ἀνθρώπινα φρονεῖν). But we shall do well to remember at the same time that even now it is just such hardy anticipations of experience that make scientific progress possible, and that nearly every one of the early inquirers whom we are about to study made some permanent addition to the store of positive knowledge, besides opening up new views of the world in every direction.

There is no justification either for the idea that Greek science was built up solely by more or less lucky guesswork, instead of by observation and experiment. The nature of our tradition, which mostly consists of Placita—that is, of what we call “results”—tends, no doubt, to create this impression. We are seldom told why any early philosopher held the views he did, and the appearance of a string of “opinions” suggests dogmatism. There are, however, certain exceptions to the general character of the tradition; and we may reasonably suppose that, if the later Greeks had been interested in the matter, there would have been many more. We shall see that Anaximander made some remarkable discoveries in marine biology, which the researches of the nineteenth century have fully confirmed ([§ 21]), and even Xenophanes supported one of his theories by referring to the fossils and petrifactions of such widely separated places as Malta, Paros, and Syracuse ([§ 59]). This is enough to show that the theory, so commonly held by the earlier philosophers, that the earth had been originally in a moist state, was not mythological in origin, but was based on, or at any rate confirmed by, biological and palaeontological observations of a thoroughly modern and scientific type. It would surely be absurd to imagine that the men who could make these observations had not the curiosity or the ability to make many others of which the memory is lost. Indeed, the idea that the Greeks were not observers is almost ludicrously wrong, as is proved by two simple considerations. The anatomical accuracy of Greek sculpture bears witness to trained habits of observation, and those of the highest order, while the fixing of the seasons by the heliacal rising and setting of the stars shows a familiarity with celestial phenomena which is by no means common at the present day.[[43]] We know, then, that the Greeks could observe well in matters affecting agriculture, navigation, and the arts, and we know that they were curious about the world. Is it conceivable that they did not use their powers of observation to gratify that curiosity? It is true, of course, that they had not our instruments of precision; but a great deal can be discovered by the help of very simple apparatus. It is not to be supposed that Anaximander erected his gnomon merely that the Spartans might know the seasons.[[44]]

Nor is it true that the Greeks made no use of experiment. The rise of the experimental method dates from the time when the medical schools began to influence the development of philosophy, and accordingly we find that the first recorded experiment of a modern type is that of Empedokles with the klepsydra. We have his own account of this (fr. [100]), and we can see how it brought him to the verge of anticipating both Harvey and Torricelli. It is once more inconceivable that an inquisitive people should have applied the experimental method in a single case without extending it to the elucidation of other problems.

Of course the great difficulty for us is the geocentric hypothesis from which science inevitably started, though only to outgrow it in a surprisingly short time. So long as the earth is supposed to be in the centre of the world, meteorology, in the later sense of the word, is necessarily identified with astronomy. It is difficult for us to feel at home in this point of view, and indeed we have no suitable word to express what the Greeks at first called an οὐρανός. It will be convenient to use the word “world” for it; but then we must remember that it does not refer solely, or even chiefly, to the earth. The later word κόσμος bears witness to the growth of scientific ideas. It meant at first the marshalling of an army, and next the ordered constitution of a state. It was transferred from this to the world because in early days the regularity and constancy of human life was far more clearly seen than the uniformity of nature. Man lived in a charmed circle of law and custom, but the world around him still seemed lawless. That, too, is why, when the regular course of nature was first realised, no better word for it could be found than δίκη. It is the same metaphor which still lives on in the expression “natural law.”[[45]]

The science of the sixth century was mainly concerned, then, with those parts of the world that are “aloft” (τὰ μετέωρα), and these include, along with the heavenly bodies, such things as clouds, rainbows, and lightning. That is how the heavenly bodies came sometimes to be explained as ignited clouds, an idea which seems astonishing to us. But we must bear in mind that science inevitably and rightly began with the most obvious hypothesis, and that it was only the thorough working out of this that could show its inadequacy. It is just because the Greeks were the first people to take the geocentric hypothesis seriously that they were able to go beyond it. Of course the pioneers of Greek thought had no clear idea of the nature of scientific hypothesis, and supposed themselves to be dealing with ultimate reality. That was inevitable before the rise of Logic. At the same time, a sure instinct guided them to the right method, and we can see how it was the effort to “save appearances”[[46]] that really operated from the first. It is, therefore, to those men that we owe the conception of an exact science which should ultimately take in the whole world as its object. They fancied—absurdly enough, no doubt—that they could work out this science at once. We sometimes make the same mistake nowadays; and it can no more rob the Greeks of the honour of having been the first to see the true, though perhaps unattainable, end of all science than it can rob our own scientific men of the honour of having brought that end nearer than it was. It is still knowledge of the kind foreseen and attempted by the Greeks that they are in search of.

Schools of philosophy.

XIV. Theophrastos, the first writer to treat the history of Greek philosophy in a systematic way,[[47]] represented the early cosmologists as standing to one another in the relation of master and scholar, and as members of regular societies. This has been regarded by many modern writers as an anachronism, and some have even denied the existence of “schools” of philosophy altogether. Such a reaction against the older view was quite justified in so far as it was directed against arbitrary classifications like the “Ionic” and “Italian” schools, which are derived through Laertios Diogenes from the Alexandrian writers of “Successions.” But the express statements of Theophrastos are not to be so lightly set aside. As this point is of great importance, it will be necessary to elucidate it still further before we enter upon our story.

The modern view really rests upon a mistaken idea of the way in which civilisation develops. In almost every department of life, we find that the corporation at first is everything and the individual nothing. The peoples of the East hardly got beyond this stage at all; their science, such as it is, is anonymous, the inherited property of a caste or guild, and we still see clearly in some cases that it was once the same among the Hellenes. Medicine, for instance, was originally the “mystery” of the Asklepiads, and it is to be supposed that all craftsmen (δημιουργοί), amongst whom Homer classes the bards (ἀοιδοί), were at first organised in a similar way. What distinguished the Hellenes from other peoples was that at a comparatively early date these crafts came under the influence of outstanding individuals, who gave them a fresh direction and a new impulse. It is doubtless in some such way that we should understand the relation of Homer to the Homeridai. The Asklepiads at a later date produced Hippokrates, and if we knew more of such guilds as the Daidalids, it is likely we should find something of the same kind. But this does not destroy the corporate character of the craft; indeed, it rather intensifies it. The guild becomes what we call a “school,” and the disciple takes the place of the apprentice. That is a vital change. A close guild with none but official heads is essentially conservative, while a band of disciples attached to a master they revere is the greatest progressive force the world knows.

It is certain that the later Athenian schools were organised corporations, the oldest of which, the Academy, maintained its existence as such for some nine hundred years, and the only question we have to decide is whether this was an innovation made in the fourth century B.C., or rather the continuance of an old tradition. As it happens, we have the authority of Plato for speaking of the chief early systems as handed down in schools. He makes Sokrates speak of “the men of Ephesos,” the Herakleiteans, as forming a strong body in his own day,[[48]] and the stranger of the Sophist and the Statesman speaks of his school as still in existence at Elea.[[49]] We also hear of “Anaxagoreans,”[[50]] and no one, of course, can doubt that the Pythagoreans were a society. In fact, there is hardly any school but that of Miletos for which we have not external evidence of the strongest kind; and even as regards it, we have the significant fact that Theophrastos speaks of philosophers of a later date as having been “associates of the philosophy of Anaximenes.”[[51]] We shall see too in the first chapter that the internal evidence in favour of the existence of a Milesian school is very strong indeed. It is from this point of view, then, that we shall now proceed to consider the men who created Hellenic science.