[938]. Arist. Phys. Α, 3. 187 a 1 (R. P. 134 b).

[939]. Arist. de Caelo, Γ, 4. 303 a 8, τρόπον γάρ τινα καὶ οὕτοι (Λεύκιππος καὶ Δημόκριτος) πάντα τὰ ὄντα ποιοῦσιν ἀριθμοὺς καὶ ἐξ ἀριθμῶν. This also serves to explain what Herakleides may have meant by attributing the theory of corporeal ὄγκοι to the Pythagorean Ekphantos of Syracuse (above, p. 338, [n. 794]).

[940]. The Epicureans misunderstood this point, or misrepresented it in order to magnify their own originality (see Zeller, p. 857, n. 3; Eng. trans. ii. p. 225, n. 2).

[941]. Arist. de Caelo, Α, 7. 275 b 32, τὴν δὲ φύσιν εἶναί φασιν αὐτῶν μίαν; Phys. Γ, 4. 203 a 34, αὐτῷ (Δημοκρίτῳ) τὸ κοινὸν σῶμα πάντων ἐστὶν ἀρχή.

[942]. Arist. Met. Α, 4. 985 b 13 (R. P. 192); cf. de Gen. Corr. 315 b 6. As Diels suggests, the illustration from the letters of the alphabet is probably due to Demokritos. It shows, in any case, how the word στοιχεῖον came to be used later for “element.” We must read, with Wilamowitz, τὸ δὲ Ζ τοῦ Η θέσει for τὸ δὲ Ζ τοῦ Ν θέσει, the older form of the letter Ζ being just an Η laid upon its side (Diels, Elementum, p. 13, n. 1).

[943]. Demokritos wrote a work, Περὶ ἰδεῶν (Sext. Math. vii. 137; R. P. 204), which Diels identifies with the Περὶ τῶν διαφερόντων ῥυσμῶν of Thrasylos, Tetr. v. 3. Theophrastos refers to Demokritos, ἐν τοῖς περὶ τῶν εἰδῶν (de Sensibus, § 51). Plut. adv. Col. 1111 a, εἶναι δὲ πάντα τὰς ἀτόμους, ἰδέας ὑπ’ αὐτοῦ καλουμένας (so the MSS.: ἰδίως, Wyttenbach; <ἢ> ἰδέας, Diels). Arist. Phys. Γ, 4. 203 a 21, (Δημόκριτος) ἐκ τῆς πανσπερμίας τῶν σχημάτων (ἄπειρα ποιεῖ τὰ στοιχεῖα). Cf. de Gen. Corr. Α, 2. 315 b 7 (R. P. 196).

[944]. Arist. Phys. Θ, 9. 265 b 25; Simpl. Phys. p. 1318, 33, ταῦτα γὰρ (τὰ ἄτομα σώματα) ἐκεῖνοι φύσιν ἐκάλουν.

[945]. Simpl. Phys. p. 36, 1 (Diels, Vors. p. 346), and R. P. 196 a.

[946]. Arist. Met. Α, 4. 985 b 4 (R. P. 192). Cf. Melissos, fr. [7] sub fin.

[947]. Cf. Zeller, “Zu Leukippus” (Arch. xv. p. 138).