• •

• • •

• • • •

and represented the number ten as the triangle of four. In other words, it showed at a glance that 1 + 2 + 3 + 4 = 10. Speusippos tells us of several properties which the Pythagoreans discovered in the dekad. It is, for instance, the first number that has in it an equal number of prime and composite numbers. How much of this goes back to Pythagoras himself, we cannot tell; but we are probably justified in referring to him the conclusion that it is “according to nature” that all Hellenes and barbarians count up to ten and then begin over again.

It is obvious that the tetraktys may be indefinitely extended so as to exhibit the sums of the series of successive numbers in a graphic form, and these sums are accordingly called “triangular numbers.”

For similar reasons, the sums of the series of successive odd numbers are called “square numbers,” and those of successive even numbers “oblong.” If odd numbers are added to the unit in the form of gnomons, the result is always a similar figure, namely a square, while, if even numbers are added, we get a series of rectangles,[[238]] as shown by the figure:—

Square Numbers. Oblong Numbers.

It is clear, then, that we are entitled to refer the study of sums of series to Pythagoras himself; but whether he went beyond the oblong, and studied pyramidal or cubic numbers, we cannot say.[[239]]

Geometry and harmonics.

49. It is easy to see how this way of representing numbers would suggest problems of a geometrical nature. The dots which stand for the pebbles are regularly called “boundary-stones” (ὅροι, termini, “terms”), and the area which they occupy, or rather mark out, is the “field” (χώρα).[[240]] This is evidently a very early way of speaking, and may therefore be referred to Pythagoras himself. Now it must have struck him that “fields” could be compared as well as numbers,[[241]] and it is even likely that he knew the rough methods of doing this which were traditional in Egypt, though certainly these would fail to satisfy him. Once more the tradition is singularly helpful in suggesting the direction that his thoughts must have taken. He knew, of course, the use of the triangle 3, 4, 5 in constructing right angles. We have seen (p. 24) that it was familiar in the East from a very early date, and that Thales introduced it to the Hellenes, if they did not know it already. In later writers it is actually called the “Pythagorean triangle.” Now the Pythagorean proposition par excellence is just that, in a right-angled triangle, the square on the hypotenuse is equal to the squares on the other two sides, and the so-called Pythagorean triangle is the application of its converse to a particular case. The very name “hypotenuse” affords strong confirmation of the intimate connexion between the two things. It means literally “the cord stretching over against,” and this is surely just the rope of the “harpedonapt.”[[242]] An early tradition says that Pythagoras sacrificed an ox when he discovered the proof of this proposition, and indeed it was the real foundation of scientific mathematics.[[243]]