Incommensurability.

50. One great disappointment, however, awaited Pythagoras. It follows at once from the Pythagorean proposition that the square on the diagonal of a square is double the square on its side, and this ought surely to be capable of numerical expression. As a matter of fact, however, there is no square number which can be divided into two equal square numbers, and so the problem cannot be solved. In this sense, it is doubtless true that Pythagoras discovered the incommensurability of the diagonal and the side of a square, and the proof mentioned by Aristotle, namely, that, if they were commensurable, we should have to say that an even number was equal to an odd number, is distinctly Pythagorean in character.[[244]] However that may be, it is certain that Pythagoras did not care to pursue the subject any further. He had, as it were, stumbled on the fact that the square root of two is a surd, but we know that it was left for Plato’s friends, Theodoros of Kyrene and Theaitetos, to give a complete theory of the matter.[[245]] The fact is that the discovery of the Pythagorean proposition, by giving birth to geometry, had really superseded the old view of quantity as a sum of units; but it was not till Plato’s time that the full consequences of this were seen.[[246]] For the present, the incommensurability of the diagonal and the square remained, as has been said, a “scandalous exception.” Our tradition says that Hippasos of Metapontion was drowned at sea for revealing this skeleton in the cupboard.[[247]]

Proportion and harmony.

51. These last considerations show that, while it is quite safe to attribute the substance of the First Book of Euclid to Pythagoras, the arithmetic of Books VII.-IX., and the “geometrical algebra” of Book II. are certainly not his. They operate with lines or with areas instead of with units, and the relations which they establish therefore hold good whether they are capable of numerical expression or not. That is doubtless why arithmetic is not treated in Euclid till after plane geometry, a complete inversion of the original order. For the same reason, the doctrine of proportion which we find in Euclid cannot be Pythagorean, and is indeed the work of Eudoxos. Yet it is clear that the early Pythagoreans, and probably Pythagoras himself, studied proportion in their own way, and that the three “medieties” in particular go back to the founder, especially as the most complicated of them, the “harmonic,” stands in close relation to his discovery of the octave. If we take the harmonic proportion 12 : 8 : 6,[[248]] we find that 12 : 6 is the octave, 12 : 8 the fifth, and 8 : 6 the fourth, and it can hardly be doubted that it was Pythagoras himself who discovered these intervals. The stories which have come down to us about his observing the harmonic intervals in a smithy, and then weighing the hammers that produced them, or of his suspending weights corresponding to those of the hammers to equal strings, are, indeed, impossible and absurd; but it is sheer waste of time to rationalise them.[[249]] For our purpose their absurdity is their chief merit. They are not stories which any Greek mathematician or musician could possibly have invented, but genuine popular tales bearing witness to the existence of a real tradition that Pythagoras was the author of this momentous discovery.

Things are numbers.

52. It was this too, no doubt, that led Pythagoras to say all things were numbers. We shall see that, at a later date, the Pythagoreans identified these numbers with geometrical figures; but the mere fact that they called them “numbers,” when taken in connexion with what we are told about the method of Eurytos, is sufficient to show this was not the original sense of the doctrine. It is enough to suppose that Pythagoras reasoned somewhat as follows. If musical sounds can be reduced to numbers, why should not everything else? There are many likenesses to number in things, and it may well be that a lucky experiment, like that by which the octave was discovered, will reveal their true numerical nature. The Neopythagorean writers, going back in this as in other matters to the earliest tradition of the school, indulge their fancy in tracing out analogies between things and numbers in endless variety; but we are fortunately dispensed from following them in these vagaries. Aristotle tells us distinctly that the Pythagoreans explained only a few things by means of numbers,[[250]] which means that Pythagoras himself left no developed doctrine on the subject, while the Pythagoreans of the fifth century did not care to add anything of the sort to the school tradition. Aristotle does imply, however, that, according to them the “right time” (καιρός) was seven, justice was four, and marriage three. These identifications, with a few others like them, we may safely refer to Pythagoras or his immediate successors; but we must not attach much importance to them. They are mere sports of the analogical fancy. If we wish to understand the cosmology of Pythagoras, we must start, not from them, but from any statements we can find that present points of contact with the teaching of the Milesian school. These, we may fairly infer, belong to the system in its most primitive form.

Cosmology.

53. Now the most striking statement of this kind is one of Aristotle’s. The Pythagoreans held, he tells us, that there was “boundless breath” outside the heavens, and that it was inhaled by the world.[[251]] In substance, this is the doctrine of Anaximenes, and it becomes practically certain that it was that of Pythagoras, when we find that Xenophanes denied it.[[252]] We may infer, then, that the further development of the idea is also due to Pythagoras himself. We are told that, after the first unit had been formed—however that may have taken place—the nearest part of the Boundless was first drawn in and limited;[[253]] and further, that it is just the Boundless thus inhaled that keeps the units separate from each other.[[254]] It represents the interval between them. This is a very primitive way of describing the nature of discrete quantity.

In the passages of Aristotle just referred to, the Boundless is also spoken of as the void or empty. This identification of air and the void is a confusion which we have already met with in Anaximenes, and it need not surprise us to find it here too.[[255]] We find also, as we might expect, distinct traces of the other confusion, that of air and vapour. It seems certain, in fact, that Pythagoras identified the Limit with fire, and the Boundless with darkness. We are told by Aristotle that Hippasos made Fire the first principle,[[256]] and we shall see that Parmenides, in discussing the opinions of his contemporaries, attributes to them the view that there were two primary “forms,” Fire and Night.[[257]] We also find that Light and Darkness appear in the Pythagorean table of opposites under the heads of the Limit and the Unlimited respectively.[[258]] The identification of breath with darkness here implied is a strong proof of the primitive character of the doctrine; for in the sixth century darkness was supposed to be a sort of vapour, while in the fifth, its true nature was well known. Plato, with his usual historical tact, makes the Pythagorean Timaios describe mist and darkness as condensed air.[[259]] We must think, then, of a “field” of darkness or breath marked out by luminous units, an imagination which the starry heavens would naturally suggest. It is even probable that we should ascribe to Pythagoras the Milesian view of a plurality of worlds, though it would not have been natural for him to speak of an infinite number. We know, at least, that Petron, one of the early Pythagoreans, said there were just a hundred and eighty-three worlds arranged in a triangle;[[260]] and Plato makes Timaios admit, when laying down that there is only one world, that something might be urged in favour of the view that there are five, as there are five regular solids.[[261]]

The heavenly bodies.