| 2.2 | gr. | chromic acid |
| 2. | potash | |
| .8 | uncomb. potash | |
| 1.4 | carb. potash | |
| .3 | sulphate of potash | |
| 6.7 |
With this liquid neutralized by nitric acid, I formed the chromates of lead, barytes, iron, and mercury; and I am inclined to believe these salts are nearly constituted as under:
| Neutral | chromate | of potash | 46 | acid | + | 42 | potash |
| — | — | of barytes | 46 | — | + | 68 | barytes |
| — | — | of lead | 46 | — | + | 97 | oxide |
| — | — | of iron | 46 | — | + | 32 | oxide (black) |
| — | — | of mercury | 46 | — | + | 174 | oxide (black) |
According to these results, the atom of chromic acid weighs 46; it is made 44 by the results of Berzelius, and from 45 to 62 by those of Vauquelin; I would not be understood to place great confidence in the above results of mine, though I am persuaded they will be found good approximations.
Is the chromic acid the deutoxide, or the tritoxide of chromium?
The determination will evidently be affected by the question, how much oxygen must be abstracted from the chromic acid to reduce it to the green oxide. Vauquelin finds 46 acid to lose 6½ oxygen, and Berzelius 10½, when converted into green oxide by heat. From the former of these, one would infer chrome to be 32, the green or protoxide of chrome to be 39, and the acid or deutoxide 46: from the latter, chrome = 25, protoxide = 32 (unknown), the green oxide = 1 protoxide and 1 deutoxide united [= 71 = 50 chrome + 21 oxygen = (25 chrome + 10½ oxygen) × 2 = 35½ × 2] the deutoxide = 39, and the tritoxide or chromic acid = 46. I have not had an opportunity to perform any experiment that appears to me decisive as to the accuracy of one or other of these views; but shall make a few remarks relative to them.
The green oxide being the most prominent compound next to the chromic acid, being commonly produced from it by any deoxidizing process, being the lowest oxide known, and combining with acids, is on these accounts entitled to the consideration of the protoxide; indeed there does not seem an instance where the protoxide of a metal is unknown, whilst the deutoxide and compound oxides are known. There is however, another oxide observed by Vauquelin and by Berzelius, which is obtained by heating the nitrate, or combination of nitric acid and the green oxide, to dryness and expelling the acid; this oxide is brown, and gives oxymuriatic acid when treated with muriatic acid; on this account it would seem to be intermediate between the green oxide and the chromic acid; it is probably a combination of the two, or the chromate of chromium. On the other view however, it must be considered as the deutoxide. What corroborates the notion of the green oxide being 39, is the fact which I have observed, of 46 parts of chromic acid combining with 64 of the green oxide of iron to form 110 of chromate of iron; in this combination the oxide of iron may be said to borrow 1 atom of oxygen from the chromic acid, and the compound may then be considered as the union of the green oxide of chrome, and the red oxide of iron. When this precipitate is subjected to the action of muriatic acid, a green solution is obtained containing the oxide of chrome, and red oxide of iron is precipitated, as Vauquelin has observed. To form the above chromate (or rather subchromate) of iron, let a given portion of neutral chromate of potash be treated with green sulphate of iron, and lime water be added, sufficient to saturate the sulphuric acid, a brown red precipitate is obtained; more sulphate and lime water must be gradually added to the clear liquid till the precipitate become green, when the proportions will be found as above stated. This artificial compound seems a subchromate; whereas the native compound seems to be a chromate. That there is some uncertainty in decomposing a chromate by heat with a view to obtain the green oxide, I have reason to suspect from having decomposed 5⅓ grains of chromate of mercury by a moderate red heat; this compound contained 1.1 chromic acid, and it yielded only .6 of green oxide, whereas it should have been .9 or .8 at least.
Upon the whole I think the evidence is in favour of the opinion that the atom of chrome is 32, the green or protoxide 39, and the deutoxide or chromic acid is 46.
24. Oxides of uranium.
There appear to be two oxides of uranium from the experiments of Klaproth, Bucholz, and Vauquelin; but the proportions of metal and oxygen have not been very nearly ascertained, from the great scarcity of the minerals containing this metal. (Vid. Bucholz, An. de Chimie, 56—142. Vauquelin, ibid. 68—277; or Nicholson’s Journ. 25—69). The oxides are obtained by precipitation from solutions of the minerals in the nitric or muriatic acid, the foreign substances being first separated.