Although the disc dynamo in its original form was impracticable as a commercial machine, yet it was not only the forerunner of the dynamo, but was, in point of fact, the first machine ever produced that is entitled to be called a dynamo. He generously left to those who might come after him the opportunity to avail themselves of his wonderful discovery. "I have rather, however," he says, "been desirous of discovering new facts and new relations dependent on magneto-electric induction than of exalting the force of those already obtained, being assured that the latter would find their development hereafter." How profoundly prophetic! Could the illustrious investigator see the hundreds of thousands of dynamos that are to-day in all parts of the world engaged in converting millions of horse-power of mechanical energy into electric energy, he would appreciate how marvellously his successors have "exalted the force" of some of the effects he had so ably shown the world how to obtain.
Faraday lived to see his infant dynamo, the first of its kind, developed into a machine not only sufficiently powerful to maintain electric arc lights, but also into a form sufficiently practicable to be continuously engaged in producing such light, in one of the lighthouses on the English coast. Holmes produced such a machine in 1862, or some years before Faraday's death. It was installed under the care of the Trinity House, at the Dungeness Lighthouse, in June, 1862, and continued in use for about ten years. When this machine was shown to Faraday by its inventor, the veteran philosopher remarked, "I gave you a baby, and you bring me a giant."
The alternating-current transformer is another gift of Faraday to the commercial world. As is well known, this instrument is a device for raising or lowering electric pressure. The name is derived from the fact that the instrument is capable of taking in at one pressure the electric energy supplied to it, and giving it out at another pressure, thus transforming it. Faraday produced the first transformer during his investigations on voltaic-current induction. The modern alternating-current transformer, though differing markedly in minor details from Faraday's primitive instrument, yet in general details is essentially identical with it. The enormous use of both step-up and step-down transformers--transformers which respectively induce currents of higher and of lower electromotive forces in their secondary coils than are passed through their primaries--shows the great practical value of this invention. The wonderful growth of the commercial applications of alternating currents during the past few decades would have been impossible without the use of the alternating-current transformer.
It is an interesting fact that it was not in the form of the step-down alternating-current transformer that Faraday's discovery of voltaic-current induction was first utilized, but in the form of a step-up transformer, or what was then ordinarily called an induction coil. As early as 1842, Masson and Bréguet constructed an induction coil by means of which minute sparks could be obtained from the secondary, in vacuo. In 1851, Ruhmkorff constructed an induction coil so greatly improved, by the careful insulation of its secondary circuit, that he could obtain from it torrents of long sparks in ordinary air. The Ruhmkorff induction coil has in late years been greatly improved both by Tesla and Elihu Thomson, who, separately and independently of each other, have produced excellent forms of high-frequency induction coils.
Induction coils have long been in use for purposes of research, and in later years have been employed in the production both of the Röntgen rays used in the photography of the invisible, and the electro-magnetic waves used in wireless telegraphy.
Röntgen's discovery was published in 1895. It was rendered possible by the prior work of Geissler and Crookes on the luminous phenomena produced by the passage of electric discharges through high vacua in glass tubes. Röntgen discovered that the invisible rays, or radiation, emitted from certain parts of a high-vacuum tube, when high-tension discharges from induction coils were passing, possessed the curious property of traversing certain opaque substances as readily as light does glass or water. He also discovered that these rays were capable of exciting fluorescence in some substances,--that is, of causing them to emit light and become luminous,--and that these rays, like the rays of light, were capable of affecting a photographic plate. From these properties two curious possibilities arose; namely, to see through opaque bodies, and to photograph the invisible. Röntgen called these rays X, or unknown rays. They are now almost invariably called by the name of their distinguished discoverer.
Let us briefly investigate how it is possible both to see and to photograph the invisible. Shortly after Röntgen's discovery, Edison, with that wonderful power of finding practical applications for nearly all discoveries, had invented the fluoroscope,--a screen covered with a peculiar chemical substance that becomes luminous when exposed to the Röntgen rays. Suppose, now, between the rays and such a screen be interposed a substance opaque to ordinary light, as, for example, the human hand. The tissues of the hand, such as the flesh and the blood, permit the rays to readily pass through them, but the bones are opaque to the rays, and, therefore, oppose their passage; consequently, the screen; instead of being uniformly illumined, will show shadows of the bones, so that, to an eye examining the screen, it will seem as though it were looking through the flesh and blood directly at the bones. In a similar manner, if a photographic plate be employed instead of the screen, a distinct photographic picture will be obtained.
Both the fluoroscope and the photographic camera have proved an invaluable aid to the surgeon, who can now look directly through the human body and examine its internal organs, and so be able to locate such foreign bodies as bullets and needles in its various parts, or make correct diagnoses of fractures or dislocations of the bones, or even examine the action of such organs as the liver and heart.
About 1886, Hertz discovered that if a small Leyden jar is discharged through a short and simple circuit, provided with a spark-gap of suitable length, a series of electro-magnetic waves are set up, which, moving through space in all directions, are capable of exciting in a similar circuit effects that can be readily recognized, although the two circuits are at fairly considerable distances apart. Here we have a simple basic experiment in wireless telegraphy, which, briefly considered, consists of means whereby oscillations or waves, set up in free space by means of disruptive discharges, are caused to traverse space and produce various effects in suitably constructed receptive devices that are operated by the waves as they impinge on them.
At first a doubt was expressed by eminent scientific men as to the practicability of successfully transmitting wireless messages through long distances, since these waves, travelling in all directions, would soon become too attenuated to produce intelligible signals; but when it was shown, from theoretical considerations, that these waves when traversing great distances are practically confined to the space between the earth's surface and the upper rarified strata of the atmosphere, the possibility of long-distance wireless telegraphic transmission was recognized. To increase the distance, it was only necessary either to increase the energy of the waves at the transmitting station, or to increase the delicacy of the receiving instruments, or both.