Several methods have been suggested for making the bob of an ordinary pendulum astatic for small displacements. One method proposed by Gray consists in fixing in the bob of a pendulum a circular trough of liquid, the curvature of this trough having a proper form. Another method which was suggested, was to attach a vertical spiral spring to a point in the axis of the pendulum a little below the point of suspension, and to a fixed point above it, so that when the pendulum is deflected it would introduce a couple.
Professor Ewing has suggested an arrangement so that the bob of the pendulum shall be partly suspended by a stretched spiral spring, and at the same time shall be partly held up from below by a vertically placed strut, the weight carried by the strut being to the weight carried by the spring in the ratio of their respective lengths. As to how these arrangements will act when carried into practice yet remains to be seen.
Another important class of instruments are inverted pendulums. These are vertical springs made of metal or wood loaded at their upper end with a heavy mass of metal. An arrangement of this sort, provided at its upper end with a pencil to write on a concave surface, was employed in 1841 to register the earthquakes at Comrie in Scotland. In Japan they were largely employed in series, each member of a series having a different period of vibration. The object of these arrangements was to determine which of the pendulums, with a given earthquake, recorded the greatest motion, it being assumed that the one which was thrown into the most violent oscillation would be the one most nearly approximating with the period of the earthquake. The result of these experiments showed that it was usually those with a slow period of vibration which were the most disturbed.
Bracket Seismographs.—A group of instruments of recent origin which have done good work, are the bracket seismographs. These instruments appear to have been independently invented by several investigators: the germ from which they originated probably being the well-known horizontal pendulum of Professor Zöllner. In Japan they were first employed by Professor W. S. Chaplin. Subsequently they were used by Professor Ewing and Mr. Gray. They consist essentially of a heavy weight supported at the extremity of a horizontal bracket which is free to turn on a vertical axis at its other end. When the frame carrying this axis is moved in any direction excepting parallel to the length of the gate-like bracket, the weight causes the bracket to turn round a line known as the instantaneous axis of the bracket corresponding to this motion of the fixed axis. Any point in this line may therefore be taken as a steady point for motions at right angles to the length of the supporting bracket. Two of these instruments placed at right angles to each other have to be employed in conjunction, and the motion of the ground is written down as two rectangular components. In Professor Ewing’s form of the instrument, light prolongations of the brackets form indices which give magnified representations of the motion, and the weights are pivoted round a vertical axis through their centre.
In the accompanying sketch b is a heavy weight pivoted at the end of a small bracket c a k, which bracket is free to turn on a knife-edge, k, above, and a pivot a, below, in the stand s. At the time of an earthquake b remains steady, and the index p, forming a continuation of the bracket, magnifies the motion of the stand, in the ratio of a c : c n.
Fig. 3.
In an instrument called a double-bracket seismograph, invented by Mr. Gray, we have two brackets hinged to each other, and one of them to a fixed frame. The planes of the two brackets are placed at right angles, so as to give to a heavy mass supported at the end of the outer bracket two degrees of horizontal freedom.
In all bracket machines, especially those which carry a pivoted weight, it is doubtful whether the weight provides a truly steady point relatively to the plate on which the record is written for motion parallel to the direction of the arm.