CHAPTER IV.
EARTHQUAKE MOTION AS DEDUCED FROM EXPERIMENT.

Experiments with falling weights—Experiments with explosives—Results obtained from experiments—Relative motion of two adjacent points—The effect of hills and excavations upon the propagation of vibrations—The intensity of artificial disturbances—Velocity with which earth vibrations are propagated—Experiments of Mallet—Experiments of Abbot—Experiments in Japan—Mallet’s results—Abbot’s results—Results obtained in Japan.

Experiments with Falling Weights.—A series of experiments, as the nature of the disturbance produced in the surface of the earth when a heavy weight is allowed to fall on it, was begun in November 1880 by Mr. T. Gray and the author. These experiments were carried out at the Akabane Engineering Works in Tokio. The weight used was a ball of iron weighing about a ton, which in the different experiments was allowed to fall from heights varying between ten and thirty-five feet. The position of the place where the ball was allowed to fall was such that in one direction the vibrations were transmitted up the side of a steep hill, in another direction across a pond with perpendicular sides, and in another direction across a level plain the material of which consisted for the most part of hardened mud extending to a very considerable depth. The vibrations produced by the fall of the ball were transmitted through this hard mud with considerable intensity to a distance of between 300 and 400 feet.

The object of the experiment was to find the nature of the vibrations produced in the crust of the earth by such a blow, the velocity of transmission through this comparatively soft material, the effect of hills and excavations in cutting off such disturbances, and the law according to which the amplitude of the vibrations diminishes with the distance from the source.

A considerable variety of apparatus was used during these experiments, but the most reliable results were obtained from the records of a rolling sphere seismograph, which wrote the vibrations on a stationary plate, and from the records of two bracket seismographs, similar to Professor Ewing’s horizontal lever seismographs, which gave a record of the vibrations as two rectangular components on a moving plate of smoked glass.

Fig. 10.

The general result as to the nature of the disturbance was that two distinct sets of vibrations were set up by the blow. In one set the direction of motion was along a line joining the point of observation with the point from which the disturbance emanated; in the other set the direction of motion was at right angles to that line. The nature of the resultant motion will be gathered from fig. 10, which is taken from the records drawn by the rolling sphere seismograph at a distance of 50 feet, 100 feet, and 200 feet respectively from the point where the ball struck the ground. The direct or normal vibrations reached the instrument first, and were followed at an interval depending on the distance of the instrument from the origin by the transverse vibrations. From the records of these two sets of vibrations as separated by the bracket seismographs, combined with the known rate of motion of the glass plate, the velocity of transmission was found to be, for normal vibrations 446–438 feet per second, and for transverse vibrations 357–353 feet per second.

The effect of the hill in cutting off the disturbance seemed to be slight, but the direction of the vibrations which ascended the side was mostly transverse. The pond, on the other hand, seemed completely to cut off the disturbance, which, however, gradually crept round the side, so that only a comparatively small triangular area was in shadow.