Among the efforts which have been made in modern times to raise seismology to a higher level, is that of Professor Perrey, of Dijon, who commenced in 1840 a series of extensive catalogues embracing the earthquakes of the world. These catalogues enabled Perrey, and subsequently Mallet in his reports to the British Association, to discuss the periodicity of earthquakes, with reference to the seasons and to other phenomena, in a more general manner than it had been possible for previous workers to accomplish. The facts thus accumulated also enabled Mallet to discuss earthquakes in general, and the various phenomena which they present were sifted and classified for inspection. Another great impetus which observational seismology received was Mr. Mallet’s report upon the Neapolitan earthquake of 1857, in which new methods of seismic investigation were put forth. These have formed the working tools of many subsequent observers, and by them, as well as by his experiments on artificially produced disturbances, Mallet finally drew the study of earthquakes from the realms of speculation by showing that they, like other natural phenomena, were capable of being understood and investigated.

In addition to Perrey and Mallet, the nineteenth century has produced many writers who have taken a considerable share in the advancement of seismology. There are the catalogues of Von Hoff, the observations of Humboldt, the theoretical investigations of Hopkins, the monographs of Schmidt, Seebach, Lasaulx, and others; the books of Fuchs, Credner, Vogt, Volger; the records and observations of Palmieri, Bertelli, Rossi, and other Italian observers. To these, which are only a few out of a long list of names, may be added the publications of the Commission appointed for the observation of earthquakes by the Natural History Society of Switzerland, and the volumes which have been published by the Seismological Society of Japan.

Before concluding this chapter it will be well to define a few of the more ordinary terms which are used in describing earthquake phenomena. It may be observed that the English word earthquake, the German erdbeben, the French tremblement de terre, the Spanish terremoto, the Japanese jishin &c., all mean, when literally translated, earth-shaking, and are popularly understood to mean a sudden and more or less violent disturbance.

Seismology (σειμός an earthquake, λόγος a discourse) in its simplest sense means the study of earthquakes. To be consistent with a Greek basis for seismological terminology, some writers have thrown aside the familiar expression ‘earthquake,’ and substituted the awkward word ‘seism.’

The source from which an earthquake originates is called the ‘origin,’ ‘focal cavity,’ or ‘centrum.’

The point or area on the surface of the ground above the origin is called the ‘epicentrum.’ The line joining the centrum and epicentrum is called the ‘seismic vertical.’

The radial lines along which an earthquake may be propagated from the centrum are called ‘wave paths.’

The angle which a wave path, where it reaches the surface of the earth, makes with that surface is called the ‘angle of emergence’ of the wave. This angle is usually denoted by the letter e.

As the result of a simple explosion at a point in a homogeneous medium, we ought, theoretically, to obtain at points on the surface of the medium equidistant from the epicentrum, equal mechanical effects. These points will lie on circles called ‘isoseismic’ or ‘coseismic’ circles. The area included between two such circles is an ‘isoseismic area.’ In nature, however, isoseismic lines are seldom circles. Elliptical or irregular curves are the common forms.

The isoseismic area in which the greatest disturbance has taken place is called the ‘meizoseismic area.’ Seebach calls the lines enclosing this area ‘pleistoseists.’