[8] Phil. of Disc. p. 274.
[9] P. 271.
[10] P. 251 and the whole of Appendix G.
[11] In Dr. Whewell's latest version of his theory (Philosophy of Discovery, p. 331) he makes a concession respecting the medium of the transmission of light, which, taken in conjunction with the rest of his doctrine on the subject, is not, I confess, very intelligible to me, but which goes far towards removing, if it does not actually remove, the whole of the difference between us. He is contending, against Sir William Hamilton, that all matter has weight. Sir William, in proof of the contrary, cited the luminiferous ether, and the calorific and electric fluids, "which," he said, "we can neither denude of their character of substance, nor clothe with the attribute of weight." "To which," continues Dr. Whewell, "my reply is, that precisely because I cannot clothe these agents with the attribute of Weight, I do denude them of the character of Substance. They are not substances, but agencies. These Imponderable Agents, are not properly called Imponderable Fluids. This I conceive that I have proved." Nothing can be more philosophical. But if the luminiferous ether is not matter, and fluid matter too, what is the meaning of its undulations? Can an agency undulate? Can there be alternate motion forward and backward of the particles of an agency? And does not the whole mathematical theory of the undulations imply them to be material? Is it not a series of deductions from the known properties of elastic fluids? This opinion of Dr. Whewell reduces the undulations to a figure of speech, and the undulatory theory to the proposition which all must admit, that the transmission of light takes place according to laws which present a very striking and remarkable agreement with those of undulations. If Dr. Whewell is prepared to stand by this doctrine, I have no difference with him on the subject.
Since this chapter was written, the hypothesis of the luminiferous ether has acquired a great accession of apparent strength, by being adopted into the new doctrine of the Conservation of Force, as affording a mechanism by which to explain the mode of production not of light only, but of heat, and probably of all the other so-called imponderable agencies. In the present immature stage of the great speculation in question, I would not undertake to define the ultimate relation of the hypothetical fluid to it; but I must remark that the essential part of the new theory, the reciprocal convertibility and interchangeability of these great cosmic agencies, is quite independent of the molecular motions which have been imagined as the immediate causes of those different manifestations and of their substitutions for one another; and the former doctrine by no means necessarily carries the latter with it. I confess that the entire theory of the vibrations of the ether, and the movements which these vibrations are supposed to communicate to the particles of solid bodies, seems to me at present the weakest part of the new system, tending rather to weigh down than to prop up those of its doctrines which rest on real scientific induction.
[12] Thus, water, of which eight-ninths in weight are oxygen, dissolves most bodies which contain a high proportion of oxygen, such as all the nitrates, (which have more oxygen than any others of the common salts,) most of the sulphates, many of the carbonates, &c. Again, bodies largely composed of combustible elements, like hydrogen and carbon, are soluble in bodies of similar composition; rosin, for instance, will dissolve in alcohol, tar in oil of turpentine. This empirical generalization is far from being universally true; no doubt because it is a remote, and therefore easily defeated, result of general laws too deep for us at present to penetrate; but it will probably in time suggest processes of inquiry, leading to the discovery of those laws.
[13] Or (according to Laplace's theory) the sun and the sun's rotation.
[14] Supra, book iii. ch. v. § 7.
[15] Supra, book iii. ch. x. § 2.
[16] In the preceding discussion, the mean is spoken of as if it were exactly the same thing with the average. But the mean for purposes of inductive inquiry, is not the average, or arithmetical mean, though in a familiar illustration of the theory the difference may be disregarded. If the deviations on one side of the average are much more numerous than those on the other (these last being fewer but greater), the effect due to the invariable cause, as distinct from the variable ones, will not coincide with the average, but will be either below or above the average, whichever be the side on which the greatest number of the instances are found. This follows from a truth, ascertained both inductively and deductively, that small deviations from the true central point are greatly more frequent than large ones. The mathematical law is, "that the most probable determination of one or more invariable elements from observation is that in which the sum of the squares of the individual aberrations," or deviations, "shall be the least possible." See this principle stated, and its grounds popularly explained, by Sir John Herschel, in his review of Quetelet on Probabilities, Essays, pp. 395 et seq.