[17] Essai Philosophique sur les Probabilités, fifth Paris Edition, p. 7.

[18] It even appears to me that the calculation of chances, where there are no data grounded either on special experience or on special inference, must, in an immense majority of cases, break down, from sheer impossibility of assigning any principle by which to be guided in setting out the list of possibilities. In the case of the coloured balls we have no difficulty in making the enumeration, because we ourselves determine what the possibilities shall be. But suppose a case more analogous to those which occur in nature: instead of three colours, let there be in the box all possible colours: we being supposed ignorant of the comparative frequency with which different colours occur in nature, or in the productions of art. How is the list of cases to be made out? Is every distinct shade to count as a colour? If so, is the test to be a common eye, or an educated eye, a painter's for instance? On the answer to these questions would depend whether the chances against some particular colour would be estimated at ten, twenty, or perhaps five hundred to one. While if we knew from experience that the particular colour occurs on an average a certain number of times in every hundred or thousand, we should not require to know anything either of the frequency or of the number of the other possibilities.

[19] Prospective Review for February 1850.

[20] "If this be not so, why do we feel so much more probability added by the first instance, than by any single subsequent instance? Why, except that the first instance gives us its possibility (a cause adequate to it), while every other only gives us the frequency of its conditions? If no reference to a cause be supposed, possibility would have no meaning; yet it is clear, that, antecedent to its happening, we might have supposed the event impossible, i.e., have believed that there was no physical energy really existing in the world equal to producing it.... After the first time of happening, which is, then, more important to the whole probability than any other single instance (because proving the possibility), the number of times becomes important as an index to the intensity or extent of the cause, and its independence of any particular time. If we took the case of a tremendous leap, for instance, and wished to form an estimate of the probability of its succeeding a certain number of times; the first instance, by showing its possibility (before doubtful) is of the most importance; but every succeeding leap shows the power to be more perfectly under control, greater and more invariable, and so increases the probability; and no one would think of reasoning in this case straight from one instance to the next, without referring to the physical energy which each leap indicated. Is it not then clear that we do not ever" (let us rather say, that we do not in an advanced state of our knowledge) "conclude directly from the happening of an event to the probability of its happening again; but that we refer to the cause, regarding the past cases as an index to the cause, and the cause as our guide to the future?"—Ibid.

[21] The writer last quoted says that the valuation of chances by comparing the number of cases in which the event occurs with the number in which it does not occur, "would generally be wholly erroneous," and "is not the true theory of probability." It is at least that which forms the foundation of insurance, and of all those calculations of chances in the business of life which experience so abundantly verifies. The reason which the reviewer gives for rejecting the theory, is that it "would regard an event as certain which had hitherto never failed; which is exceedingly far from the truth, even for a very large number of constant successes." This is not a defect in a particular theory, but in any theory of chances. No principle of evaluation can provide for such a case as that which the reviewer supposes. If an event has never once failed, in a number of trials sufficient to eliminate chance, it really has all the certainty which can be given by an empirical law: it is certain during the continuance of the same collocation of causes which existed during the observations. If it ever fails, it is in consequence of some change in that collocation. Now, no theory of chances will enable us to infer the future probability of an event from the past, if the causes in operation, capable of influencing the event, have intermediately undergone a change.

[22] Pp. 18, 19. The theorem is not stated by Laplace in the exact terms in which I have stated it; but the identity of import of the two modes of expression is easily demonstrable.

[23] For a fuller treatment of the many interesting questions raised by the theory of probabilities, I may now refer to a recent work by Mr. Venn, Fellow of Caius College, Cambridge, "The Logic of Chance;" one of the most thoughtful and philosophical treatises on any subject connected with Logic and Evidence, which have been produced in this or any other country for many years. Some criticisms contained in it have been very useful to me in revising the corresponding chapters of the present work. In several of Mr. Venn's opinions, however, I do not agree. What these are will be obvious to any reader of Mr. Venn's work who is also a reader of this.

[24] There was no greater foundation for this than for Newton's celebrated conjecture that the diamond was combustible. He grounded his guess on the very high refracting power of the diamond, comparatively to its density; a peculiarity which had been observed to exist in combustible substances; and on similar grounds he conjectured that water, though not combustible, contained a combustible ingredient. Experiment having subsequently shown that in both instances he guessed right, the prophecy is considered to have done great honour to his scientific sagacity; but it is to this day uncertain whether the guess was, in truth, what there are so many examples of in the history of science, a farsighted anticipation of a law afterwards to be discovered. The progress of science has not hitherto shown ground for believing that there is any real connexion between combustibility and a high refracting power.

[25] Hartley's Observations on Man, vol. i. p. 16. The passage is not in Priestley's curtailed edition.

[26] I am happy to be able to quote the following excellent passage from Mr. Baden Powell's Essay on the Inductive Philosophy, in confirmation, both in regard to history and to doctrine, of the statement made in the text. Speaking of the "conviction of the universal and permanent uniformity of nature," Mr. Powell says (pp. 98-100),