That the same edge which fitted a portion of the first less section should be capable of adjustment so as to fit a portion of the next similar but greater section, supposes a geometrical provision in the curved form of the chamber of great complication and difficulty. But God hath bestowed upon this humble architect the practical skill of the learned geometrician; and he makes this provision with admirable precision in that curvature of the logarithmic spiral which he gives to the section of the shell. This curvature obtaining, he has only to turn his operculum slightly round in its own place, as he advances it into each newly-formed portion of his chamber, to adapt one margin of it to a new and larger surface and a different curvature, leaving the space to be filled up by increasing the operculum wholly on the outer margin.

* * * * *

Why the Mollusks, who inhabit turbinated and discoid shells, should, in the progressive increase of their spiral dwellings, affect the peculiar law of the logarithmic spiral, is easily to be understood. Providence has subjected the instinct which shapes out each to a rigid uniformity of operation.—Professor Mosely: Philos. Trans. 1838.

HYDRAULIC THEORY OF SHELLS.

How beautifully is the wisdom of God developed in shaping out and moulding shells! and especially in the particular value of the constant angle which the spiral of each species of shell affects,—a value connected by a necessary relation with the economy of the material of each, and with its stability and the conditions of its buoyancy. Thus the shell of the Nautilus Pompilius has, hydrostatically, an A-statical surface. If placed with any portion of its surface upon the water, it will immediately turn over towards its smaller end, and rest only on its mouth. Those conversant with the theory of floating bodies will recognise in this an interesting property.—Ibid.

SERVICES OF SEA-SHELLS AND ANIMALCULES.

Dr. Maury is disposed to regard these beings as having much to do in maintaining the harmonies of creation, and the principles of the most admirable compensation in the system of oceanic circulation. “We may even regard them as regulators, to some extent, of climates in parts of the earth far removed from their presence. There is something suggestive both of the grand and the beautiful in the idea that while the insects of the sea are building up their coral islands in the perpetual summer of the tropics, they are also engaged in dispensing warmth to distant parts of the earth, and in mitigating the severe cold of the polar winter.”

DEPTH OF THE PRIMEVAL SEAS.

Professor Forbes, in a communication to the Royal Society, states that not only the colour of the shells of existing mollusks ceases to be strongly marked at considerable depths, but also that well-defined patterns are, with very few and slight exceptions, presented only by testacea inhabiting the littoral, circumlittoral, and median zones. In the Mediterranean, only one in eighteen of the shells taken from below 100 fathoms exhibit any markings of colour, and even the few that do so are questionable inhabitants of those depths. Between 30 and 35 fathoms, the proportion of marked to plain shells is rather less than one in three; and between the margin and two fathoms the striped or mottled species exceed one-half of the total number. In our own seas, Professor Forbes observes that testacea taken from below 100 fathoms, even when they are individuals of species vividly striped or banded in shallower zones, are quite white or colourless. At between 60 and 80 fathoms, striping and banding are rarely presented by our shells, especially in the northern provinces; from 50 fathoms, shallow bands, colours, and patterns, are well marked. The relation of these arrangements of colour to the degree of light penetrating the different zones of depth is a subject well worthy of minute inquiry.