NATURAL WATER-PURIFIERS.

Mr. Warrington kept for a whole year twelve gallons of water in a state of admirably balanced purity by the following beautiful action:

In the tank, or aquarium, were two gold fish, six water-snails, and two or three specimens of that elegant aquatic plant Valisperia sporalis, which, before the introduction of the water-snails, by its decayed leaves caused a growth of slimy mucus, and made the water turbid and likely to destroy both plants and fish. But under the improved arrangement the slime, as fast as it was engendered, was consumed by the water-snails, which reproduced it in the shape of young snails, which furnished a succulent food to the fish. Meanwhile the Valisperia plants absorbed the carbonic acid exhaled by the respiration of their companions, fixing the carbon in their growing stems and luxuriant blossoms, and refreshing the oxygen (during sunshine in visible little streams) for the respiration of the snails and the fish. The spectacle of perfect equilibrium thus simply maintained between animal, vegetable, and inorganic activity, was strikingly beautiful; and such means might possibly hereafter be made available on a large scale for keeping tanked water sweet and clean.—Quarterly Review, 1850.

HOW TO IMITATE SEA-WATER.

The demand for Sea-water to supply the Marine Aquarium—now to be seen in so many houses—induced Mr. Gosse to attempt the manufacture of Sea-water, more especially as the constituents are well known. He accordingly took Scheveitzer’s analysis of Sea-water for his guide. In one thousand grains of sea-water taken off Brighton, it gave: water, 964·744; chloride of sodium, 27·059; chloride of magnesium, 3·666; chloride of potassium, 9·755; bromide of magnesium, 0·29; sulphate of magnesia, 2·295; sulphate of lime, 1·407; carbonate of lime, 0·033: total, 999·998. Omitting the bromide of magnesium, the carbonate of lime, and the sulphate of lime, as being very small quantities, the component parts were reduced to common salt, 3½ oz.; Epsom salts, ¼ oz.; chloride of magnesium, 200 grains troy; chloride of potassium, 40 grains troy; and four quarts of water. Next day the mixture was filtered through a sponge into a glass jar, the bottom covered with shore-pebbles and fragments of stone and fronds of green sea-weed. A coating of green spores was soon deposited on the sides of the glass, and bubbles of oxygen were copiously thrown off every day under the excitement of the sun’s light. In a week Mr. Gosse put in species of Actinia Bowerbankia, Cellularia, Serpula, &c. with some red sea-weeds; and the whole throve well.

VELOCITY OF IMPRESSIONS TRANSMITTED TO THE BRAIN.

Professor Helmholtz of Königsberg has, by the electro-magnetic method,[58] ascertained that the intelligence of an impression made upon the ends of the nerves in communication with the skin is transmitted to the brain with a velocity of about 195 feet per second. Arrived at the brain, about one-tenth of a second passes before the will is able to give the command to the nerves that certain muscles shall execute a certain motion, varying in persons and times. Finally, about 1/100th of a second passes after the receipt of the command before the muscle is in activity. In all, therefore, from the excitation of the sensitive nerves till the moving of the muscle, 1¼ to 2/10ths of a second are consumed. Intelligence from the great toe arrives about 1/30th of a second later than from the ear or the face.

Thus we see that the differences of time in the nervous impressions, which we are accustomed to regard as simultaneous, lie near our perception. We are taught by astronomy that, on account of the time taken to propagate light, we now see what has occurred in the fixed stars years ago; and that, owing to the time required for the transmission of sound, we hear after we see is a matter of daily experience. Happily the distances to be traversed by our sensuous perceptions before they reach the brain are so short that we do not observe their influence, and are therefore unprejudiced in our practical interest. With an ordinary whale the case is perhaps more dubious; for in all probability the animal does not feel a wound near its tail until a second after it has been inflicted, and requires another second to send the command to the tail to defend itself.

PHOTOGRAPHS ON THE RETINA.

The late Rev. Dr. Scoresby explained with much minuteness and skill the varying phenomena which presented themselves to him after gazing intently for some time on strongly-illuminated objects,—as the sun, the moon, a red or orange or yellow wafer on a strongly-contrasted ground, or a dark object seen in a bright field. The doctor explained, upon removing the eyes from the object, the early appearance of the picture or image which had been thus “photographed on the Retina,” with the photochromatic changes which the picture underwent while it still retained its general form and most strongly-marked features; also, how these pictures, when they had almost faded away, could at pleasure, and for a considerable time, be renewed by rapidly opening and shutting the eyes.