When by measurements, in which the evidence of the method advances equally with the precision of the results, the volume of the earth is reduced to the millionth part of the volume of the sun; when the sun himself, transported to the region of the stars, takes up a very modest place among the thousands of millions of those bodies that the telescope has revealed to us; when the 38,000,000 of leagues which separate the earth from the sun have become, by reason of their comparative smallness, a base totally insufficient for ascertaining the dimensions of the visible universe; when even the swiftness of the luminous rays (77,000 leagues per second) barely suffices for the common valuations of science; when, in short, by a chain of irresistible proofs, certain stars have retired to distances that light could not traverse in less than a million of years;—we feel as if annihilated by such immensities. In assigning to man and to the planet that he inhabits so small a position in the material world, astronomy seems really to have made progress only to humble us.—Arago.
MEAN TEMPERATURE OF THE EARTH’S SURFACE.
Professor Dove has shown, by taking at all seasons the mean of the temperature of points diametrically opposite to each other, that the mean temperature of the whole earth’s surface in June considerably exceeds that in December. This result, which is at variance with the greater proximity of the sun in December, is, however, due to a totally different and very powerful cause,—the greater amount of land in that hemisphere which has its summer solstice in June (i. e. the northern); and the fact is so explained by him. The effect of land under sunshine is to throw heat into the general atmosphere, and to distribute it by the carrying power of the latter over the whole earth. Water is much less effective in this respect, the heat penetrating its depths and being there absorbed; so that the surface never acquires a very elevated temperature, even under the equator.—Sir John Herschel’s Outlines.
TEMPERATURE OF THE EARTH STATIONARY.
Although, according to Bessel, 25,000 cubic miles of water flow in every six hours from one quarter of the earth to another, and the temperature is augmented by the ebb and flow of every tide, all that we know with certainty is, that the resultant effect of all the thermal agencies to which the earth is exposed has undergone no perceptible change within the historic period. We owe this fine deduction to Arago. In order that the date palm should ripen its fruit, the mean temperature of the place must exceed 70 deg. Fahr.; and, on the other hand, the vine cannot be cultivated successfully when the temperature is 72 deg. or upwards. Hence the mean temperature of any place at which these two plants flourished and bore fruit must lie between these narrow limits, i. e. could not differ from 71 deg. Fahr. by more than a single degree. Now from the Bible we learn that both plants were simultaneously cultivated in the central valleys of Palestine in the time of Moses; and its then temperature is thus definitively determined. It is the same at the present time; so that the mean temperature of this portion of the globe has not sensibly altered in the course of thirty-three centuries.
THEORY OF CRYSTALLISATION.
Professor Plücker has ascertained that certain crystals, in particular the cyanite, “point very well to the north by the magnetic power of the earth only. It is a true compass-needle; and more than that, you may obtain its declination.” Upon this Mr. Hunt remarks: “We must remember that this crystal, the cyanite, is a compound of silica and alumina only. This is the amount of experimental evidence which science has afforded in explanation of the conditions under which nature pursues her wondrous work of crystal formation. We see just sufficient of the operation to be convinced that the luminous star which shines in the brightness of heaven, and the cavern-secreted gem, are equally the result of forces which are known to us in only a few of their modifications.”—Poetry of Science.
Gay Lussac first made the remark, that a crystal of potash-alum, transferred to a solution of ammonia-alum, continued to increase without its form being modified, and might thus be covered with alternate layers of the two alums, preserving its regularity and proper crystalline figure. M. Beudant afterwards observed that other bodies, such as the sulphates of iron and copper, might present themselves in crystals of the same form and angles, although the form was not a simple one, like that of alum. But M. Mitscherlich first recognised this correspondence in a sufficient number of cases to prove that it was a general consequence of similarity of composition in different bodies.—Graham’s Elements of Chemistry.
IMMENSE CRYSTALS.
Crystals are found in the most microscopic character, and of an exceedingly large size. A crystal of quartz at Milan is three feet and a quarter long, and five feet and a half in circumference: its weight is 870 pounds. Beryls have been found in New Hampshire measuring four feet in length.—Dana.