VISIBLE CRYSTALLISATION.
Professor Tyndall, in a lecture delivered by him at the Royal Institution, London, on the properties of Ice, gave the following interesting illustration of crystalline force. By perfectly cleaning a piece of glass, and placing on it a film of a solution of chloride of ammonium or sal ammoniac, the action of crystallisation was shown to the whole audience. The glass slide was placed in a microscope, and the electric light passing through it was concentrated on a white disc. The image of the crystals, as they started into existence, and shot across the disc in exquisite arborescent and symmetrical forms, excited the admiration of every one. The lecturer explained that the heat, causing the film of moisture to evaporate, brought the particles of salt sufficiently near to exercise the crystalline force, the result being the beautiful structure built up with such marvellous rapidity.
UNION OF MINERALOGY AND GEOMETRY.
It is a peculiar characteristic of minerals, that while plants and animals differ in various regions of the earth, mineral matter of the same character may be discovered in any part of the world,—at the Equator or towards the Poles; at the summit of the loftiest mountains, and in works far beneath the level of the sea. The granite of Australia does not necessarily differ from that of the British islands; and ores of the same metals (the proper geological conditions prevailing) may be found of the same general character in all regions. Climate and geographical position have no influence on the composition of mineral substances.
This uniformity may, in some measure, have induced philosophers to seek its extension to the forms of crystallography. About 1760 (says Mr. Buckle, in his History of Civilization), Romé de Lisle set the first example of studying crystals, according to a scheme so large as to include all the varieties of their primary forms, and to account for their irregularities and the apparent caprice with which they were arranged. In this investigation he was guided by the fundamental assumption, that what is called an irregularity is in truth perfectly regular, and that the operations of nature are invariable. Haüy applied this great idea to the almost innumerable forms in which minerals crystallise. He thus achieved a complete union between mineralogy and geometry; and, bringing the laws of space to bear on the molecular arrangements of matter, he was able to penetrate into the intimate structure of crystals. By this means he proved that the secondary forms of all crystals are derived from their primary forms by a regular process of decrement; and that when a substance is passing from a liquid to a solid state, its particles cohere, according to a scheme which provides for every possible change, since it includes even those subsequent layers which alter the ordinary type of the crystal, by disturbing its natural symmetry. To ascertain that such violations of symmetry are susceptible of mathematical calculation, was to make a vast addition to our knowledge; and, by proving that even the most uncouth and singular forms are the natural results of their antecedents, Haüy laid the foundation of what may be called the pathology of the inorganic world. However paradoxical such a notion may appear, it is certain that symmetry is to crystals what health is to animals; so that an irregularity of shape in the first corresponds with an appearance of disease in the second.—See Hist. Civilization, vol. i.
REPRODUCTIVE CRYSTALLISATION.
The general belief that only organic beings have the power of reproducing lost parts has been disproved by the experiments of Jordan on crystals. An octohedral crystal of alum was fractured; it was then replaced in a solution, and after a few days its injury was seen to be repaired. The whole crystal had of course increased in size; but the increase on the broken surface had been so much greater that a perfect octohedral form was regained.—G. H. Lewes.
This remarkable power possessed by crystals, in common with animals, of repairing their own injuries had, however, been thus previously referred to by Paget, in his Pathology, confirming the experiments of Jordan on this curious subject: “The ability to repair the damages sustained by injury ... is not an exclusive property of living beings; for even crystals will repair themselves when, after pieces have been broken from them, they are placed in the same conditions in which they were first formed.”
GLASS BROKEN BY SAND.
In some glass-houses the workmen show glass which has been cooled in the open air; on this they let fall leaden bullets without breaking the glass. They afterwards desire you to let a few grains of sand fall upon the glass, by which it is broken into a thousand pieces. The reason of this is, that the lead does not scratch the surface of the glass; whereas the sand, being sharp and angular, scratches it sufficiently to produce the above effect.