It is (says Olbers) a remarkable but hitherto unregarded fact, that while shells are found in secondary and tertiary formations, no Fossil Meteoric Stones have as yet been discovered. May we conclude from this circumstance, that previous to the present and last modification of the earth’s surface no meteoric stones fell on it, though at the present time it appears probable, from the researches of Schreibers, that 700 fall annually?[24]

THE END OF OUR SYSTEM.

While all the phenomena in the heavens indicate a law of progressive creation, in which revolving matter is distributed into suns and planets, there are indications in our own system that a period has been assigned for its duration, which, sooner or later, it must reach. The medium which fills universal space, whether it be a luminiferous ether, or arise from the indefinite expansion of planetary atmospheres, must retard the bodies which move in it, even were it 360,000 millions of times more rare than atmospheric air; and, with its time of revolution gradually shortening, the satellite must return to its planet, the planet to its sun, and the sun to its primeval nebula. The fate of our system, thus deduced from mechanical laws, must be the fate of all others. Motion cannot be perpetuated in a resisting medium; and where there exist disturbing forces, there must be primarily derangement, and ultimately ruin. From the great central mass, heat may again be summoned to exhale nebulous matter; chemical forces may again produce motion, and motion may again generate systems; but, as in the recurring catastrophes which have desolated our earth, the great First Cause must preside at the dawn of each cosmical cycle; and, as in the animal races which were successively reproduced, new celestial creations of a nobler form of beauty and of a higher form of permanence may yet appear in the sidereal universe. “Behold, I create new heavens and a new earth, and the former shall not be remembered.” “The new heavens and the new earth shall remain before me.” “Let us look, then, according to this promise, for the new heavens and the new earth, wherein dwelleth righteousness.”—North-British Review, No. 3.

BENEFITS OF GLASS TO MAN.

Cuvier eloquently says: “It could not be expected that those Phœnician sailors who saw the sand of the shores of Bætica transformed by fire into a transparent Glass, should have at once foreseen that this new substance would prolong the pleasures of sight to the old; that it would one day assist the astronomer in penetrating the depths of the heavens, and in numbering the stars of the Milky Way; that it would lay open to the naturalist a miniature world, as populous, as rich in wonders as that which alone seemed to have been granted to his senses and his contemplation: in fine, that the most simple and direct use of it would enable the inhabitants of the coast of the Baltic Sea to build palaces more magnificent than those of Tyre and Memphis, and to cultivate, almost under the polar circle, the most delicious fruit of the torrid zone.”

THE GALILEAN TELESCOPE.

Galileo appears to be justly entitled to the honour of having invented that form of Telescope which still bears his name; while we must accord to John Lippershey, the spectacle-maker of Middleburg, the honour of having previously invented the astronomical telescope. The interest excited at Venice by Galileo’s invention amounted almost to frenzy. On ascending the tower of St. Mark, that he might use one of his telescopes without molestation, Galileo was recognised by a crowd in the street, who took possession of the wondrous tube, and detained the impatient philosopher for several hours, till they had successively witnessed its effects. These instruments were soon manufactured in great numbers; but were purchased merely as philosophical toys, and were carried by travellers into every corner of Europe.

WHAT GALILEO FIRST SAW WITH HIS TELESCOPE.

The moon displayed to him her mountain-ranges and her glens, her continents and her highlands, now lying in darkness, now brilliant with sunshine, and undergoing all those variations of light and shadow which the surface of our own globe presents to the alpine traveller or to the aeronaut. The four satellites of Jupiter illuminating their planet, and suffering eclipses in his shadow, like our own moon; the spots on the sun’s disc, proving his rotation round his axis in twenty-five days; the crescent phases of Venus, and the triple form or the imperfectly developed ring of Saturn,—were the other discoveries in the solar system which rewarded the diligence of Galileo. In the starry heavens, too, thousands of new worlds were discovered by his telescope; and the Pleiades alone, which to the unassisted eye exhibit only seven stars, displayed to Galileo no fewer than forty.—North-British Review, No. 3.

The first telescope “the starry Galileo” constructed with a leaden tube a few inches long, with a spectacle-glass, one convex and one concave, at each of its extremities. It magnified three times. Telescopes were made in London in February 1610, a year after Galileo had completed his own (Rigaud, On Harriot’s Papers, 1833). They were at first called cylinders. The telescopes which Galileo constructed, and others of which he made use for observing Jupiter’s satellites, the phases of Venus, and the solar spots, possessed the gradually-increasing powers of magnifying four, seven, and thirty-two linear diameters; but they never had a higher power.—Arago, in the Annuaire for 1842.

Clock-work is now applied to the equatorial telescope, so as to allow the observer to follow the course of any star, comet, or planet he may wish to observe continuously, without using his hands for the mechanical motion of the instrument.