ANTIQUITY OF TELESCOPES.

Long tubes were certainly employed by Arabian astronomers, and very probably also by the Greeks and Romans; the exactness of their observations being in some degree attributable to their causing the object to be seen through diopters or slits. Abul Hassan speaks very distinctly of tubes, to the extremities of which ocular and object diopters were attached; and instruments so constructed were used in the observatory founded by Hulagu at Meragha. If stars be more easily discovered during twilight by means of tubes, and if a star be sooner revealed to the naked eye through a tube than without it, the reason lies, as Arago has truly observed, in the circumstance that the tube conceals a great portion of the disturbing light diffused in the atmospheric strata between the star and the eye applied to the tube. In like manner, the tube prevents the lateral impression of the faint light which the particles of air receive at night from all the other stars in the firmament. The intensity of the image and the size of the star are apparently augmented.—Humboldt’s Cosmos, vol. iii. p. 53.

NEWTON’S FIRST REFLECTING TELESCOPE.

The year 1668 may be regarded as the date of the invention of Newton’s Reflecting Telescope. Five years previously, James Gregory had described the manner of constructing a reflecting telescope with two concave specula; but Newton perceived the disadvantages to be so great, that, according to his statement, he “found it necessary, before attempting any thing in the practice, to alter the design, and place the eye-glass at the side of the tube rather than at the middle.” On this improved principle Newton constructed his telescope, which was examined by Charles II.; it was presented to the Royal Society near the end of 1671, and is carefully preserved by that distinguished body, with the inscription:

“The first Reflecting Telescope; invented by Sir Isaac Newton,
and made with his own hands.”

Sir David Brewster describes this telescope as consisting of a concave metallic speculum, the radius of curvature of which was 12-2/3 or 13 inches, so that “it collected the sun’s rays at the distance of 6-1/3 inches.” The rays reflected by the speculum were received upon a plane metallic speculum inclined 45° to the axis of the tube, so as to reflect them to the side of the tube in which there was an aperture to receive a small tube with a plano-convex eye-glass whose radius was one-twelfth of an inch, by means of which the image formed by the speculum was magnified 38 times. Such was the first reflecting telescope applied to the heavens; but Sir David Brewster describes this instrument as small and ill-made; and fifty years elapsed before telescopes of the Newtonian form became useful in astronomy.

SIR WILLIAM HERSCHEL’S GREAT TELESCOPE AT SLOUGH.

The plan of this Telescope was intimated by Herschel, through Sir Joseph Banks, to George III., who offered to defray the whole expense of it; a noble act of liberality, which has never been imitated by any other British sovereign. Towards the close of 1785, accordingly, Herschel began to construct his reflecting telescope, forty feet in length, and having a speculum fully four feet in diameter. The thickness of the speculum, which was uniform in every part, was 3½ inches, and its weight nearly 2118 pounds; the metal being composed of 32 copper, and 10·7 of tin: it was the third speculum cast, the two previous attempts having failed. The speculum, when not in use, was preserved from damp by a tin cover, fitted upon a rim of close-grained cloth. The tube of the telescope was 39 ft. 4 in. long, and its width 4 ft. 10 in.; it was made of iron, and was 3000 lbs. lighter than if it had been made of wood. The observer was seated in a suspended movable seat at the mouth of the tube, and viewed the image of the object with a magnifying lens or eye-piece. The focus of the speculum, or place of the image, was within four inches of the lower side of the mouth of the tube, and came forward into the air, so that there was space for part of the head above the eye, to prevent it from intercepting many of the rays going from the object to the mirror. The eye-piece moved in a tube carried by a slider directed to the centre of the speculum, and fixed on an adjustible foundation at the mouth of the tube. It was completed on the 27th August 1789; and the very first moment it was directed to the heavens, a new body was added to the solar system, namely, Saturn and six of its satellites; and in less than a month after, the seventh satellite of Saturn, “an object,” says Sir John Herschel, “of a far higher order of difficulty.”—Abridged from the North-British Review, No. 3.

This magnificent instrument stood on the lawn in the rear of Sir William Herschel’s house at Slough; and some of our readers, like ourselves, may remember its extraordinary aspect when seen from the Bath coach-road, and the road to Windsor. The difficulty of managing so large an instrument—requiring as it did two assistants in addition to the observer himself and the person employed to note the time—prevented its being much used. Sir John Herschel, in a letter to Mr. Weld, states the entire cost of its construction, 4000l., was defrayed by George III. In 1839, the woodwork of the telescope being decayed, Sir John Herschel had it cleared away; and piers were erected, on which the tube was placed, that being of iron, and so well preserved that, although not more than one-twentieth of an inch thick, when in the horizontal position it contained within all Sir John’s family; and next the two reflectors, the polishing apparatus, and portions of the machinery, to the amount of a great many tons. Sir John attributes this great strength and resistance to the internal structure of the tube, very similar to that patented under the name of corrugated iron-roping. Sir John Herschel also thinks that system of triangular arrangement of the woodwork was upon the principle to which “diagonal bracing” owes its strength.

THE EARL OF ROSSE’S GREAT REFLECTING TELESCOPE.