Commencing with the substance which exerted the least absorptive power, and proceeding onwards to the most energetic, the following order of absorption was observed :—

Liquids Vapours
Bisulphide of carbon Bisulphide of carbon
Chloroform Chloroform
Iodide of methyl Iodide of methyl
Iodide of ethyl Iodide of ethyl
Benzol Benzol
Amylene Amylene
Sulphuric aether Sulphuric aether
Acetic aether Acetic aether
Formic aether Formic aether
Alcohol Alcohol
Water

We here find the order of absorption in both cases be the same. We have liberated the molecules from the bonds which trammel them more or less in a liquid condition; but this change in their state of aggregation does not change their relative powers of absorption. Nothing could more clearly prove that the act of absorption depends upon the individual molecule, which equally asserts its power in the liquid and the gaseous state. We may safely conclude from the above table that the position of a vapour is determined by that of its liquid. Now at the very foot of the list of liquids stands water, signalising itself above all others by its enormous power of absorption. And from this fact, even if no direct experiment on the vapour of water had ever been made, we should be entitled to rank that vapour as our most powerful absorber of radiant heat. Its attenuation, however, diminishes its action. I have proved that a shell of air two inches in thickness surrounding our planet, and saturated with the vapour of sulphuric aether, would intercept 35 per cent. of the earth's radiation. And though the quantity of aqueous vapour necessary to saturate air is much less than the amount of sulphuric aether vapour which it can sustain, it is still extremely probable that the estimate already made of the action of atmospheric vapour within 10 feet of the earth's surface, is under the mark; and that we are indebted to this wonderful substance, to an extent not accurately determined, but certainly far beyond what has hitherto been imagined, for the temperature now existing at the surface of the globe.

.

.

[14. Reciprocity of Radiation and Absorption.]

Throughout the reflections which have hitherto occupied us, the image before the mind has been that of a radiant source sending forth calorific waves, which on passing among the molecules of a gas or vapour were intercepted by those molecules in various degrees. In all cases it was the transference of motion from the aether to the comparatively quiescent molecules of the gas or vapour that occupied our thoughts. We have now to change the form of our conception, and to figure these molecules not as absorbers but as radiators, not as the recipients but as the originators of wave-motion. That is to say, we must figure them vibrating, and generating in the surrounding aether undulations which speed through it with the velocity of light. Our object now is to enquire whether the act of chemical combination, which proves so potent as regards the phenomena of absorption, does not also manifest its power in the phenomena of radiation. For the examination of this question it is necessary, in the first place, to heat our gases and vapours to the same temperature, and then examine their power of discharging the motion thus imparted to them upon the aether in which they swing.

A heated copper ball was placed above a ring gas-burner possessing a great number of small apertures, the burner being connected by a tube with vessels containing the various gases to be examined. By gentle pressure the gases were forced through the orifices of the burner against the copper ball, where each of them, being heated, rose in an ascending column. A thermoelectric pile, entirely screened from the hot ball, was exposed to the radiation of the warm gas, while the deflection of a magnetic needle connected with the pile declared the energy of the radiation.

By this mode of experiment it was proved that the selfsame molecular arrangement which renders a gas a powerful absorber, renders it a powerful radiator — that the atom or molecule which is competent to intercept the calorific waves is, in the same degree, competent to send them forth. Thus, while the atoms of elementary gases proved themselves unable to emit any sensible amount of radiant heat, the molecules of compound gases were shown to be capable of powerfully disturbing the surrounding aether. By special modes of experiment the same was proved to hold good for the vapours of volatile liquids, the radiative power of every vapour being found proportional to its absorptive power.

The method of experiment here pursued, though not of the simplest character, is still easy to grasp. When air is permitted to rush into an exhausted tube, the temperature of the air is raised to a degree equivalent to the vis viva extinguished. [Footnote: See above for a definition of vis viva.] Such air is said to be dynamically heated, and, if pure, it shows itself incompetent to radiate, even when a rock-salt window is provided for the passage of its rays. But if instead of being empty the tube contain a small quantity of vapour, the warmed air communicates its heat by contact to the vapour, the molecules of which convert into the radiant form the heat imparted to them by the atoms of the air. By this process also, which I have called Dynamic Radiation, the reciprocity of radiation and absorption has been conclusively proved.[Footnote: When heated air imparts its motion to another gas or vapour, the transference of heat is accompanied by a change of vibrating period. The Dynamic Radiation of vapours is rendered possible by this transmutation of vibrations.]