-----

[ Fireman's Respirator.]

We have thus been led by our first unpractical experiments into a thicket of practical considerations. But another step is possible. Admiring, as I do, the bravery of our firemen, and hearing that smoke was a more serious enemy than flame itself, I thought of devising a fireman's respirator.

Our fire-escapes are each in charge of a single man, and it would be of obvious importance to place it in the power of each of those men to penetrate through the densest smoke, into the recesses of a house, and there to rescue those who would otherwise be suffocated or burnt. Cotton-wool, which so effectually arrested dust, was first tried; but, though found soothing in certain gentle kinds of smoke, it was no match for the pungent fumes of a resinous fire. For the purpose of catching the atmospheric germs, M. Pouchet spread a film of glycerine on a plate of glass, urged air against the film, and examined the dust which stuck to it. The moistening of the cotton-wool with

glycerine was a decided improvement; still the respirator only enabled us to remain in dense smoke for three or four minutes, after which the irritation became unendurable. Reflection suggested that, besides the smoke, there must be numerous hydrocarbons produced, which, being in a state of vapour, would be very imperfectly arrested by the cotton-wool. These, in all probability, were the cause of the residual irritation; and if these could be removed, a practically perfect respirator might possibly be obtained.

I state the reasoning exactly as it occurred to my mind. Its result will be anticipated by many present. All bodies possess the power of condensing, in a greater or less degree, gases and vapours upon their surfaces, and when the condensing body is very porous, or in a fine state of division, the force of condensation may produce very remarkable effects. Thus, a clean piece of platinum-foil placed in a mixture of oxygen and hydrogen so squeezes the gases together as to cause them to combine; and if the experiment be made with care, the heat of combination may raise the platinum to bright redness. The promptness of this action is greatly augmented by reducing the platinum to a state of fine division. A pellet of 'spongy platinum,' for instance, plunged into a mixture of oxygen and hydrogen, causes the gases to explode instantly. In virtue of its extreme porosity, a similar power is possessed by charcoal. It is not strong enough to cause the oxygen and hydrogen to combine like the spongy platinum, but it so squeezes the more condensable vapours, and acts with such condensing power upon the oxygen of the air, as to bring both within the combining distance, thus enabling the oxygen to attack and destroy the vapours in the pores of the charcoal. In this way, effluvia of all kinds may be virtually burnt up; and this is the principle of the excellent charcoal respirators invented by Dr. Stenhouse. Armed with one of these, you may go into the foulest-smelling places without having your nose offended.

But, while powerful to arrest vapours, the charcoal respirator is ineffectual as regards smoke. The smoke-particles get freely through the respirator. With a number of such respirators, tested in a proper room, from half a minute to a minute was the limit of endurance. This might be exceeded by Faraday's simple method of emptying the lungs completely, and then filling them before going into a smoky atmosphere. In fact, each solid smoke particle is itself a bit of charcoal, and carries on it, and in it, its little load of irritating vapour. It is this, far more than the particles of carbon themselves, that produces the irritation. Hence two causes of offence are to be removed: the carbon particles which convey the irritant by adhesion and condensation, and the free vapour which accompanies the particles. The cotton-wool moistened with glycerine I knew would arrest the first; fragments of charcoal I hoped would stop the second. In the first fireman's respirator, Mr. Carrick's arrangement of two valves, the one for inhalation, the other for exhalation, was preserved. But the portion of the respirator which holds the filtering and absorbent substances, was prolonged to a depth of four or five inches (see fig. 5.) Under the partition of wire-gauze q r at the bottom of the space which fronts the mouth was placed a layer of cotton-wool, c, moistened with glycerine; then a thin layer of dry wool, c'; then a layer of charcoal fragments; and finally a second thin layer of dry cotton-wool. The succession of the layers may be changed without prejudice to the action. A wire-gauze cover, shown in plan under fig. 5, keeps the substances from falling out of the respirator. A layer of caustic lime may be added for the absorption of carbonic acid; but in the densest smoke that we have hitherto employed, it has not been found necessary, nor is it shown in the figure. In a flaming building, indeed, the mixture of air with the smoke never permits the carbonic acid to become so dense as to be irrespirable; but in a place where the gas is present in undue quantity, the fragments of lime would materially mitigate its action.

In a small cellar-like chamber with a stone flooring and stone walls, the first experiments were made. We Placed there furnaces containing resinous pine-wood, lighted the wood, and, placing over it a lid which prevented too brisk a circulation of the air, generated dense volumes of smoke. With our eyes protected by suitable glasses, my assistant and I have remained for half an hour and more in smoke so dense and pungent that a single inhalation, through the undefended mouth, would be perfectly unendurable. We might have prolonged our stay for hours.

FIG. 5.