Contact Period.Available Chlorine 0.35 p.p.m.
Exposed to Bright
Sunlight (April)
Stored in Dark
Cupboard.
Nil 215215
30 minutes130145
1 hour122136
21⁄2hours61130
31⁄2hours032

Determination of Dosage Required. The dosage required for the treatment of a water can only be accurately determined by treating samples with various amounts of chlorine and estimating the number of bacteria and B. coli after an interval of time equal to that available in practice. The temperature of the water during the experiment should be the same as that of the water at the time of sampling.

In order to limit the range covered by the experiments the approximate dosage can be ascertained from [Diagram V] if the amount of oxygen absorbed by the water is known. This diagram is calculated on the amount of available chlorine, present as chlorine or hypochlorite, that will reduce the B. coli content to the U. S. Treasury standard (2 B. coli per 100 c.cms.) in two hours. If the oxygen absorbed values are determined by the four-hour test at 27° C. they should be multiplied by two.

DIAGRAM V
RELATION OF DOSAGE TO OXYGEN ABSORBED

Another method which has been generally adopted for military work during the war, consists in the addition of definite volumes of a standard chlorine solution to several samples of the water and, after a definite interval, testing for the presence of free chlorine by the starch-iodide reaction. The details of the method of Gascard and Laroche, which is used by the French sanitary service, have been given by Comte.[12] One hundred c.cms. of the water to be examined are placed in each of 5 vessels and 1, 2, 3, 4, and 5 drops of dilute Eau de Javelle (1 : 100) are added and the contents stirred. After twenty minutes, 1 c.cm. of potassium iodide-starch reagent (1 gram each of starch, potassium, iodide and crystallized sodium carbonate to 100 c.cms.) is added and the samples again stirred. The lowest dilution showing a definite blue colour is regarded as the dose required, and the number of drops is identical with that required of the undiluted Eau de Javelle for 10 litres of water when the same dropping instrument is used. The actual concentration represented by these dilutions depends necessarily upon the size of the drops and the strength of the undiluted Eau de Javelle, but one drop per 100 c.cms. usually represents approximately 1 p.p.m.

In Horrocks’s method, as used in the British army, a standard bleach solution is added and is almost immediately followed by the zinc iodide-starch reagent. The two methods were compared by Massy,[13] who found that the French method gave an average result of only 0.06 m.gr. per litre (0.06 p.p.m.) higher than the English method. Water in the Gallipoli campaign required from 0.21 to 1.06 p.p.m. as determined by both methods.

Diénert, Director of the Paris Service for investigating drinking water, adds 3 p.p.m. of available chlorine and allows the mixture to stand fifteen minutes after shaking; the residual chlorine is then titrated with thiosulphate. The amount absorbed is increased by 0.5 p.p.m. and in the opinion of Diénert this dosage is correct for a contact period of three hours.

For military camps where a standpipe usually provides a reasonable contact period, it has been found good practice to add sufficient chlorine to give a rich blue colour with the starch-iodide reagent and subsequently reduce the dosage gradually until the water, after standing one hour, gives but a faint reaction to the test reagent. This method should be checked up as soon as possible by bacteriological examinations. An example of this method is given in [Table XIV].