CHLORINATION OF WATER


CHAPTER I

HISTORICAL

Chlorine, although one of the most widely distributed elements known to chemists, is never found in the free condition in nature; it exists in enormous quantities in combination with sodium, potassium, calcium, magnesium, etc. As sodium chloride, common salt, it occurs in practically inexhaustible quantities in sea water together with smaller quantities of other chlorides. In mineral form, enormous deposits of sodium chloride are found in Galicia, Transylvania, Spain, in England (particularly in Cheshire), and in sections of North America. The most important deposits of potassium chloride are those at Stassfurt, Germany, where it occurs either in the crystalline condition as sylvine or combined with magnesium chloride as carnallite.

Chlorine was discovered by the Swedish chemist Scheele in 1774, but he, like Lavoisier and his pupil Berthollet, who declared it an oxygenated muriatic acid, was unaware of the elemental nature of the new substance. Sir Humphrey Davy investigated this body in 1810 and definitely proved it to be an element; Davy designated the element chlorine from the Greek χλωρός = green.

The first attempt to utilise chlorine, or its compounds, for bleaching purposes, appears to have been due to James Watt, who noticed the decolourising properties of chlorine during a visit to Berthollet. This attempt ended in failure because of the destructive effect on the fibres, but, in later trials, this was prevented by first absorbing the gas in a solution of fixed alkali. These experiments proved the possibility of bleaching by means of chlorine compounds but the high cost of soda made the process unprofitable, and it was not until Henry succeeded in preparing a combination with lime that could be reduced to a dry powder that this mode of chemical bleaching became a commercial success.

The manufacture of chloride of lime (hypochlorite of lime, bleaching powder, bleach) was taken up by Charles Tennant in 1799 at St. Rollox near Glasgow, and in 1800 about 50 tons were sold at a price of $680 (£139) per ton.

Chlorine is produced as a by-product in the manufacture of soda by the Leblanc process, but until 1865, when the British Alkali Act stopped the discharge of hydrochloric acid vapours into the atmosphere, the development of the bleaching powder industry was not rapid. The hydrochloric acid that was formerly discharged into the air as a waste product afterwards became a valuable asset that enabled the Leblanc process to successfully compete with the newer ammonia-soda process. In 1890 another competitor to the Leblanc process was introduced when caustic and chlorine were produced in Germany by electrolytic methods. After the successful development of this method in Germany, it was taken up in the United States of America and in 1912 more than 30,000 electrical horse-power were daily used in this industry. In 1914 the almost complete cessation of exports of bleach from Europe raised the price, which attained phenomenal heights in 1916 (cf. [page 125]), and stimulated the production of bleach both in the U. S. A. and Canada.