LIQUID CHLORINE

The use of liquefied chlorine for the disinfection of water was first proposed by Lieutenant Nesfield[1] of the Indian Medical Service. He stated that: “It occurred to me that chlorine gas might be found satisfactory ... if suitable means could be found for using it.... The next important question was how to render the gas portable. This might be accomplished in two ways: By liquefying it, and storing it in lead-lined iron vessels, having a jet with a very fine capillary canal, and fitted with a tap or a screw cap. The tap is turned on, and the cylinder placed in the amount of water required. The chlorine bubbles out, and in ten to fifteen minutes the water is absolutely safe, and has only to be rendered tasteless by the addition of sodium sulphite made into a cake or tablet.... The cylinders could, of course, be refilled. This method would be of use on a large scale, as for service water carts.”

The first practical demonstration of the possibilities of this method was made by Major Darnall[2] of the Medical Corps, United States Army, in 1910. Chlorine was taken from steel cylinders and passed through automatic reducing valves which provided a uniform flow of gas for the water requiring treatment. A uniform flow of water was maintained through the mixing pipe and so secured a uniform dosage. This apparatus might be considered as the forerunner of the various commercial types of machines that were developed later and which are being so extensively used at the present time.

A working model, having a capacity of 500 gallons per hour, was erected at Fort Myer, Va., and was operated on water that had been treated with alum but had received no further purification. Despite the presence of the flocculated organic matter, satisfactory purification was obtained with 0.5 to 1.0 p.p.m. of available chlorine and no taste or odour was imparted to the supply.

From the results obtained at Fort Myer, and Washington, D.C., Darnall concluded that “In general, it may be said that with an average unfiltered river water such as that of the Potomac, about one-half of one part (by weight) of chlorine gas per million of water will be required. For clear lake waters three-tenths to four-tenths of a part per million will be sufficient.”

A Board of Officers of the War Department examined the results and reported (June, 1911) “That the apparatus is as efficient as purification by ozone or hypochlorite and is more reliable in operation than either.... That it could be installed at a very low cost and that the cost of operation would be very slight.”

In June, 1912, Ornstein experimented with chlorine gas, obtained from the liquefied gas in cylinders, for sewage and water disinfection but his method differed from Darnall’s in first dissolving the gas in water and feeding the solution to the liquid to be treated.

Kienle[3] made experiments at Wilmington, Del., in November, 1912, and obtained a constant flow of gas by means of high- and low-pressure valves; the gas was dissolved in water in an absorption tower and afterwards fed to the water to be treated.

Van Loan and Thomas of Philadelphia experimented with liquid chlorine on a large scale at the Belmont Filter Plant in September, 1912. The chlorine was fed into the filtered water basin in the gaseous state and the quantity was regulated by the loss in weight of the containers. The dosage was approximately 0.14 p.p.m. (West[4]).

Jackson, of Brooklyn, made similar experiments about the same time at the Ridgewood Reservoir, Brooklyn, and his type of apparatus was shortly afterwards put on the market as the Leavitt-Jackson Liquid Chlorine Machine. The regulation of the flow in this machine was determined by the loss in weight of the gas cylinder which was suspended from a sensitive scale beam. By moving the counterbalancing weight on the beam at a constant rate, a uniform flow of gas was obtained, the area of the orifice being kept constant by the equilibrium in the balance operating controlling valves through a system of levers.