In describing the principal parts indicated in Figure 10, it will give an idea of the assembling of the machine if a beginning be made with the main iron castings. These comprise the main bed (64), two side frames (62), and the front frame (58). The side frames are strengthened by the ribs which form the edge, and which are about three times as thick as the body of the casting. The object of the front frame is to support the foot lever (59), the rocking frame (57) carrying the rubber roll (79), and the wooden roof (75) over which the leather is passed. The spring (76) pulls back the rocking frame (57) when relieved by the operator removing his foot from the lever (59). The long spring (77) lifts up the foot lever (59) when the latter is released.
The pullies (73) are connected with the knife cylinder which shaves the leather. The cylinder is obscured by the wheel-guard (65) and is, therefore, shown separately. This cylinder is comprised of a shaped piece of steel (turned out of solid metal bars of 4-3/4 in. diameter) into which spiral steel blades are caulked with copper or brass. When turned, the body of the cylinder is 4-5/8 in. in diameter, but the parts forming the bearings are reduced to 1-1/2 in. The number of blades is twelve, fourteen, or sixteen, according to the kind of leather shaved, and to the choice of the operator.
It is interesting to note that these blades are now being made in Sheffield, although, before the war, they had to be imported. The knife guard (65), shown in detail in Figure 11, is an ingenious contrivance which prevents the operator's hands being drawn into the machine. It consists of an automatic shutter worked by a steel chain from the foot lever. Figure 11 a represents the shutter closed down on the knife with the rubber roll, on which the leather is carried to the knife, at a safe distance from the shutters. Fig. [11] b shows the position when the machine is shaving the leather, the guard being clear and the rubber roll engaged with the knife.
Fig. 11.
In order to sharpen the blades of the cylinder, a carborundum wheel is fixed in close proximity, its position being indicated in the drawing by the wheel cover (67). A bracket for feeding the wheel to the blades when grinding them is shown at 66. When grinding the blades, the saddle (68) carries the wheel backwards and forwards across them. A special feature of the saddle in this particular machine is the double-thread screw, one a right hand, and the other a left hand. The saddle (68) is actuated by a "swimmer," as the makers term it, which engages, say, first the right-hand thread; when the saddle has travelled to the end of its movement the "swimmer" automatically enters the left-hand thread, and the saddle is rotated in the opposite direction. The "swimmer" can be disengaged instantaneously. A brush (55) is fixed near the cylinder to remove any leather shavings adhering to the blades. It also acts to some extent as a fan, and, by creating a current of air, carries the leather dust away from the operator. A trough is filled with water to catch the dust from the carborundum wheel, while the knives are being ground. The trough should be cleared out and refilled with clean water from time to time. It is essential that no dust from the grinding wheel comes into contact with vegetable tanned leather required in a natural or colour finish, otherwise it will cause iron stains, which are difficult to remove without damaging the leather. For this reason, the knives should not be ground while this class of leather is being shaved.
An important detail of the machine under description is a trueing device. Knives are often roughened owing to the carborundum wheel wearing irregularly. The trueing device keeps the wheel perfectly true by means of a diamond held in the end of a screw (78). Another ingenious arrangement (patented) is a spring (79a) placed at the back of the rubber roll (79), which enables the roll to spring back when the leather, or any part of it, is too thick for the cutting cylinder.
A unique advantage of the Howard-Smith machine is that it is ball-bearing throughout. The main driving shaft revolves on four massive ball-bearings in case (71). The pullies are firmly fixed to the driving shaft with keys or feathers. Afterwards the pullies are machined, so that the whole shaft with its pullies is perfectly balanced, and the machine runs smoothly without vibration.