§ 100. In Conception there is attained a universality of intellectual action in so far as the empirical details are referred to a Schema, as Kant called it. But the necessity of the connection is wanting to it. To produce this is the task of the thinking activity, which frees itself from all representations, and with its clearly defined determinations transcends conceptions. The Thinking activity frees itself from all sensuous representations by means of the processes of Conception and Perception. Comprehension, Judgment, and Syllogism, develop for themselves into forms which, as such, have no power of being perceived by the senses. But it does not follow from this that he who thinks cannot return out of the thinking activity and carry it with him into the sphere of Conception and Perception. The true thinking activity deprives itself of no content. The abstraction affecting a logical purism which looks down upon Conception and Perception as forms of intelligence quite inferior to itself, is a pseudo-thinking, a morbid and scholastic error. Education will be the better on its guard against this the more it has led the pupil by the legitimate road of Perception and Conception to Thinking. Memorizing especially is an excellent preparatory school for the Thinking activity, because it gives practice to the intelligence in exercising itself in abstract ideas.

§ 101. The fostering of the Sense of Truth from the earliest years up, is the surest way of leading the pupil to gain the power of thinking. The unprejudiced, disinterested yielding to Truth, as well as the effort to shun all deception and false seeming, are of the greatest value in strengthening the power of reflection, as this considers nothing of value but the actually existing objective circumstances.

—The indulging an illusion as a pleasing recreation of the intelligence should be allowed, while lying must not be tolerated. Children have a natural inclination for mystifications, for masquerades, for raillery, and for theatrical performances, &c. This inclination to illusion is perfectly normal with them, and should be permitted. The graceful kingdom of Art is developed from it, as also the poetry of conversation in jest and wit. Although this sometimes becomes stereotyped into very prosaic conventional forms of speech, it is more tolerable than the awkward honesty which takes everything in its simple literal sense. And it is easy to discover whether children in such play, in the activity of free joyousness, incline to the side of mischief by their showing a desire of satisfying their selfish interest. Then they must be checked, for in that case the cheerfulness of harmless joking gives way to premeditation and dissimulation.—

§ 102. An acquaintance with logical forms is to be recommended as a special educational help in the culture of intelligence. The study of Mathematics does not suffice, because it presupposes Logic. Mathematics is related to Logic in the same way as Grammar, the Physical Sciences, &c. The logical forms must be known explicitly in their pure independent forms, and not merely in their implicit state as immanent in objective forms.

SECOND CHAPTER.

The Logical Presupposition or Method.

§ 103. The logical presupposition of instruction is the order in which the subject-matter develops for the consciousness. The subject, the consciousness of the pupil, and the activity of the instructor, interpenetrate each other in instruction, and constitute in actuality one whole.

§ 104. (1) First of all, the subject which is to be learned has a specific determinateness which demands in its representation a certain fixed order. However arbitrary we may desire to be, the subject has a certain self-determination of its own which no mistreatment can wholly crush out, and this inherent immortal reason is the general foundation of instruction.

—To illustrate; however one may desire to manipulate a language in teaching it, he cannot change the words in it, or the inflections of the declensions and conjugations. And the same restriction is laid upon our inclinations in the different divisions of Natural History, in the theorems of Arithmetic, Geometry, &c. The theorem of Pascal remains still the theorem of Pascal, and will always remain so.—

§ 105. (2) But the subject must be adapted to the consciousness of the pupil, and here the order of procedure and the exposition depend upon the stage which he has reached intellectually, for the special manner of the instruction must be conditioned by this. If he is in the stage of perception, we must use the illustrative method; if in the stage of conception, that of combination; and if in the stage of reflection that of demonstration. The first exhibits the object directly, or some representation of it; the second considers it according to the different possibilities which exist in it, and turns it around on all sides; the third questions the necessity of the connection in which it stands either with itself or with others. This is the natural order from the stand-point of the scientific intelligence: first, the object is presented to the perception; then combination presents its different phases; and, finally, the thinking activity circumscribes the restlessly moving reflection by the idea of necessity. Experiment in the method of combination is an excellent means for a discovery of relations, for a sharpening of the attention, for the arousing of a many-sided interest; but it is no true dialectic, though it be often denoted by that name.