25. mx′1 † my′0 ¶ x′y1 [Fig. II.
i.e. “Some x′ are y.”
26. mx′0 † y1m′0 ¶ y1x′0 [Fig. I (α).
i.e. “All y are x.”
27. x1m0 † y′1m′0 ¶ (x1y′0 † y′1x0) [Fig. I (β).
i.e. “All x are y, and all y′ are x′.”
28. m1x0 † my1 ¶ x′y1 [Fig. II.
i.e. “Some x′ are y.”
29. mx0 † y1m0 ¶ nothing.
[Fallacy of Like Eliminands not asserted to exist.]
30. x1m0 † ym1 ¶ x′y1 [Fig. II.
i.e. “Some y are x′.”
31. x1m′0 † y1m′0 ¶ nothing.
[Fallacy of Like Eliminands not asserted to exist.]
[pg147]32. xm′0 † m1y′0 ¶ xy′0 [Fig. I.
i.e. “No x are y′.”
33. mx0 † my0 ¶ nothing.
[Fallacy of Like Eliminands not asserted to exist.]
34. mx′0 † ym1 ¶ xy1 [Fig. II.
i.e. “Some x are y.”