35. mx0 † y1m′0 ¶ y1x0 [Fig. I (α).
i.e. “All y are x′.”
36. m1x0 † ym1 ¶ x′y1 [Fig. II.
i.e. “Some x′ are y.”
37. m1x′0 † ym0 ¶ xy′1 [Fig. III.
i.e. “Some x are y′.”
38. mx0 † m′y0 ¶ xy0 [Fig. I.
i.e. “No x are y.”
39. mx′1 † my0 ¶ x′y′1 [Fig. II.
i.e. “Some x′ are y′.”
40. x′m0 † y′1m′0 ¶ y′1x′0 [Fig. I (α).
i.e. “All y′ are x.”
41. x1m0 † ym′0 ¶ x1y0 [Fig. I (α).
i.e. “All x are y′.”
42. m′x0 † ym0 ¶ xy0 [Fig. I.
i.e. “No x are y.”
[SL5-B]Solutions for § 5, Nos. 13–24.
13. No Frenchmen like plumpudding;
All Englishmen like plumpudding.