3. xm′1 † y′1m′0 ¶ xy1 [Fig. II.] Concl. right.
[pg149] 4. x1m′0 † ym0 ¶ x1y0 [Fig. I (α).] Concl. right.
5. m′x′1 † m′y0 ¶ x′y′1 [Fig. II.] Concl. right.
6. x′m0 † y1m0 Fallacy of Like Eliminands not asserted to exist.
7. m′x′1 † y′1m0 Fallacy of Unlike Eliminands with an Entity-Premiss.
8. m′x′0 † y′1m0 ¶ y′1x′0 [Fig. I (α).] Concl. right.
9. mx′1 † my0 ¶ x′y′1 [Fig. II.] Concl. right.
10. m′1x0 † m′1y′0 ¶ x′y1 [Fig. III.] Concl. right.
11. x1m0 † ym1 ¶ x′y1 [Fig. II.] Concl. right.
12. xm0 † m′y′0 ¶ xy′0 [Fig. I.] Concl. right.