13. xm0 † y′1m′0 ¶ y′1x0 [Fig. I (α).] Concl. right.
14. m′1x0 † m′1y′0 ¶ x′y1 [Fig. III.] Concl. right.
15. mx′1 † y1m0 ¶ x′y′1 [Fig. II.] Concl. right.
16. x′m0 † y′1m0 Fallacy of Like Eliminands not asserted to exist.
17. m′x0 † m′1y0 ¶ x′y′1 [Fig. III.] Concl. right.
18. x′m0 † my1 ¶ xy1 [Fig. II.] Concl. right.
19. mx′1 † m1y′0 ¶ x′y1 [Fig. II.] Concl. right.
20. x′m′0 † m′y′1 ¶ xy′1 [Fig. II.] Concl. right.
21. mx0 † m1y0 ¶ x′y′1 [Fig. III.] Concl. right.
22. x′1m′0 † ym′1 ¶ xy1 [Fig. II.] Concl. wrong: the right one is “Some x are y.”