13. xm0y′1m′0y′1x0 [Fig. I (α).] Concl. right.

14. m′1x0m′1y′0x′y1 [Fig. III.] Concl. right.

15. mx′1y1m0x′y′1 [Fig. II.] Concl. right.

16. x′m0y′1m0 Fallacy of Like Eliminands not asserted to exist.

17. m′x0m′1y0x′y′1 [Fig. III.] Concl. right.

18. x′m0my1xy1 [Fig. II.] Concl. right.

19. mx′1m1y′0x′y1 [Fig. II.] Concl. right.

20. x′m′0m′y′1xy′1 [Fig. II.] Concl. right.

21. mx0m1y0x′y′1 [Fig. III.] Concl. right.

22. x′1m′0ym′1xy1 [Fig. II.] Concl. wrong: the right one is “Some x are y.”