23. m1x′0m′y′0x′y′0 [Fig. I.] Concl. right.

24. x1m0m′1y′0x1y′0 [Fig. I (α).] Concl. right.

25. xm′0m1y′0xy′0 [Fig. I.] Concl. right.

26. m1x0y1m′0y1x0 [Fig. I (α).] Concl. right.

27. x1m′0my′0x1y′0 [Fig. I (α).] Concl. right.

28. x1m′0y′m′0 Fallacy of Like Eliminands not asserted to exist.

29. x′m0m′y′0x′y′0 [Fig. I.] Concl. right.

30. x1m′0m1y0x1y0 [Fig. I (α).] Concl. right.

31. x′1m0y′m′0x′1y′0 [Fig. I (α).] Concl. right.

32. xm0y′m′0xy′0 [Fig. I.] Concl. right.