Such is Professor Tyndall’s view of the universe, rising incidentally out of his theory of heat, his main object being to elucidate his theory of heat and light.
Modifications of the Surface of the Globe.
As a consequence of the hypothesis of central heat, it is admitted that our planet has been agitated by a series of local disturbances; that is to say, by ruptures of its solid crust occurring at more or less distant intervals. These partial revolutions at the surface are supposed to have been produced, as we shall have occasion to explain, by upheavals or depressions of the solid crust, resulting from the fluidity of the central parts, and by the cooling down of the external crust of the globe.
Almost all bodies, in passing from a liquid to a solid state, are diminished in size in the process. In molten metals which resume the solid state by cooling, this diminution amounts to about a tenth of their volume; but the decrease in size is not equal throughout the whole mass. Hence, as a result of the solidification of the internal parts of the globe, the outer envelope would be too large; and would no longer fit the inner sphere, which had contracted in cooling. Cracks and hollows occur under such circumstances, even in small masses, and the effect of converting such a vast body as the earth from a liquid, or rather molten condition, to a solid state, may be imagined. As the interior became solid and concrete by cooling, furrows, corrugations, and depressions in the external crust of the globe would occur, causing great inequalities in its surface; producing, in short, what are now called chains of mountains.
At other times, in lieu of furrows and irregularities, the solid crust has become ruptured, producing fissures and fractures in the outer envelope, sometimes of immense extent. The liquid substances contained in the interior of the globe, with or without the action of the gases they enclose, escape through these openings; and, accumulating on the surface, become, on cooling and consolidating, mountains of various heights.
It would also happen, and always from the same cause, namely, from the internal contraction caused by the unequal cooling of the globe, that minor fissures would be formed in the earth’s crust; incandescent liquid matter would be afterwards injected into these fissures, filling them up, and forming in the rocky crust those long narrow lines of foreign substances which we call dykes.
Finally, it would occasionally happen, that in place of molten matter, such as granite or metalliferous compounds, escaping through these fractures and fissures in the globe, actual rivers of boiling water, abundantly charged with various mineral salts (that is to say, with silicates, and with calcareous and magnesian compounds), would also escape, since the elements of water would be abundant in the incandescent mass. Added to these the chemical and mechanical action of the atmosphere, of rain, rivers, and the sea, have all a tendency to destroy the hardest rocks. The mineral salts and other foreign substances, entering into combination with those already present in the waters of the sea, and separating at a subsequent period from these waters, would be thrown down, and thus constitute extensive deposits—that is to say, sedimentary formations. These became, on consolidation, the sedimentary rocks.
The furrows, corrugations, and fractures in the terrestrial crust, which so changed the aspect of the surface, and for the time displaced the sea-basins, would be followed by periods of calm. During these periods, the débris, torn by the movement of the waters from certain points of the land, would be transported to other parts of the globe by the oceanic currents. These accumulated heterogeneous materials, when deposited at a later period, would ultimately constitute formations—that is, transported or drifted rocks.
We have ventured to explain some of the theories by which it is sought to explain the cosmography of the world. But our readers must understand that all such speculations are, of necessity, purely hypothetical.
In conformity with the preceding considerations we shall divide the mineral substances of which the earth is composed into three general groups, under the following heads:—