The Oldhaven beds (so termed by Mr. W. Whitaker from their development at the place of the same name in Kent) are a local deposit, occurring beneath the London Clay on the south side of the London basin, from Croydon eastward, at the most eastern part of Surrey, and through Kent—in the north-western corner of which county they form some comparatively broad tracts. The beds consist of rounded flint pebbles, in a fine sandy base, or of fine light-coloured sand, and are from eighty to ninety feet thick under London.

The London Clay, which has a breadth of twenty miles or more about London, consists of tenacious brown and bluish-grey clay, with layers of the nodular concretions, called Septaria, which are well known on the Essex and Hampshire coasts, where they are collected for making Roman cement. The London Clay has a maximum thickness of nearly 500 feet. The fossils of the London Clay are of marine genera, and very plentiful in some districts. Taken altogether they seem to indicate a moderate, rather than a tropical climate, although the Flora is, as far as can be judged, certainly tropical in its affinities.[86] The number of species of extinct Turtles obtained from the Isle of Sheppey alone, is stated by Prof. Agassiz to exceed that of all the species of Chelone now known to exist throughout the globe. Above this great bed lie the Bracklesham and Bagshot beds, which consist of light-yellow sand with an intermediate layer of dark-green and brown clay, over which lie the Barton Clay (in the Hampshire basin) and the white Upper Bagshot Sands, which are succeeded by the Fluvio-marine series comprising the Headon, Bembridge, and Hempstead series, and consisting of limestones, clays, and marls, of marine, brackish, and fresh-water origin.[87] For fuller accounts of the Tertiary strata of England, the reader is recommended to the numerous excellent memoirs of Mr. Prestwich, to the memoir “On the Tertiary Fluvio-marine Formations of the Isle of Wight,” by Professor Edward Forbes, and to the memoir “On the Geology of the London Basin,” by Mr. W. Whitaker.

At the base of the Argile Plastique of France is a conglomerate of chalk and of divers calcareous substances, in which have been found at Bas-Meudon some remains of Reptiles, Turtles, Crocodiles, Mammals, and, more lately, those of a large Bird, exceeding the Ostrich in size, the Gastornis, which Professor Owen classes among the wading rather than among aquatic birds. In the Soissonnais there is found, at the same horizon, a great mass of lignite, enclosing some shells and bones of the most ancient Pachyderm yet discovered, the Coryphodon, which resembles at once both the Anoplotherium and the Pig. The Sables Inférieurs, or Bracheux Sands, form a marine bed of great thickness near Beauvais; they are principally sands, but include beds of calciferous clay and banks of shelly sandstone, and are considered to be older than the plastic clay and lignite, and to correspond with the Thanet Sands of England. They are rich in shells, including many Nummulites. At La Fère, in the Department of the Aisne, a fossil skull of Arctocyon primævus, supposed to be related both to the Bear and to the Kinkajou, and to be the oldest known Tertiary Mammal, was found in a deposit of this age. This series seems to have been formed chiefly in fresh water.

The Calcaire grossier, consisting of marine limestones of various kinds, and with a coarse, sometimes compact, grain, is suitable for mason-work. These deposits, which form the most characteristic member of the Paris basin, naturally divide themselves into three groups of strata, characterised, the first, by Nummulites; the second by Miliolites; and the third or upper beds by Cerithia. The beds are also sometimes named Nummulite limestone, Miliolite limestone, and Cerithium limestone. Above these a great mass, generally sandy, is developed. It is marine at the base, and there are indications of brackish water in its upper parts; it is called Beauchamp Sandstone, or Sables Moyens (Grès de Beauchamp). These sands are very rich in shells. The siliceous limestone, or lower travertin, is a compact siliceous limestone extending over a wide area, and resembles a precipitate from mineral waters. The gypseous formation consists of a long series of marly and argillaceous beds, of a greyish, green, or white colour, in the intervals between which a thick deposit of gypsum, or sulphate of lime, is intercalated. This gypsum bed is found in its greatest thickness in France at Montmartre and Pantin near Paris. The formation of this gypsum is probably due to the action of free sulphuric acid upon the carbonate of lime of the formation; the sulphuric acid itself being produced by the transformation of the gaseous masses of sulphuretted hydrogen emanating from volcanic vents, into that acid, by the action of air and water. It was, as we have already said, in the gypsum-quarries of Montmartre that the numerous bones of Palæotherium and Anoplotherium were found. It is exclusively at this horizon that we find the remains of these animals, which seem to have been preceded by the Coryphodon, and afterwards by the Lophiodon; the order of succession in the appearance of these animals is now perfectly established. It may be added that round Paris the Eocene formation, from its lowest beds to the highest, is composed of beds of plastic clay, of the Calcaire grossier with its Nummulites, Miliolites, and Alveolites, followed by the gypseous formation; the series terminating in the Fontainebleau Sandstone, remarkable for its thickness and also for its fine scenery, as well as for its usefulness in furnishing paving-stone for the capital. In Provence the same series of rocks are continued, and attain an enormous thickness. This upper part of the Eocene deposit is entirely of lacustrine formation. Grignon has procured from a single spot, where they were embedded in a calcareous sand, no less than 400 fossils, chiefly formed of comminuted shells, in which, however, were well-preserved species both of marine, terrestrial, and fresh-water shells. Of the Paris basin, Sir Charles Lyell says: “Nothing is more striking in this assemblage of fossil testacea than the great proportion of species referable to the genus Cerithium. There occur no less than 137 species of this genus in the Paris basin, and almost all of them in the Calcaire grossier. Most of the living Cerithia ([Figs. 157] and [168]) inhabit the sea near the mouths of rivers, where the waters are brackish; so that their abundance in the marine strata now under consideration is in harmony with the hypothesis that the Paris basin formed a gulf into which several rivers flowed.”[88]

Fig. 157.—Cerithium telescopium.
(Living form.)

To give the reader some idea of the formation, first come the limestones and lower marls, which contain fine lignite or wood-coal produced from vegetable matter buried in moist earth, and excluded from all access of air, a material which is worked in some parts of the south of France as actively as a coal-mine. In these lignites Anodon and other fresh-water shells are found.

From the base of Sainte-Victoire to the other side of Aix, we trace a conglomerate characterised by its red colour, but which dies away in its prolongation westward. This conglomerate contains land-snails (Helix) of various sizes, mixed with fresh-water shells. Upon this conglomerate, comprising therein the marls, rests a thick deposit of limestone with the gypsum of Aix and Manosque, which is believed to correspond with that of Paris. Some of the beds are remarkably rich in sulphur. The calcareous marly laminæ which accompany the gypsum of Aix contain Insects of various kinds, and Fishes resembling Lebias cephalotes. Finally, the whole terminates at Manosque in a fresh series of marls and sandstones, alternating with beds of limestone with Limnæa and Planorbis. At the base of this series are found three or four beds of lignite more inflammable than coal, which also give out a very sulphurous oil. We may form some estimate of the thickness of this last stage, if we add that, above the beds of fusible lignite, we may reckon sixty others of dry lignite, some of them capable of being very profitably worked if this part of Provence were provided with more convenient roads.

“The Nummulitic formation, with its characteristic fossils,” says Lyell,[89] “plays a far more conspicuous part than any other Tertiary group in the solid framework of the earth’s crust, whether in Europe, Asia, or Africa. It often attains a thickness of many thousand feet, and extends from the Alps to the Carpathians, and is in full force in the north of Africa, as, for example, in Algeria and Morocco. It has been traced from Egypt, where it was largely quarried of old for the building of the Pyramids, into Asia Minor, and across Persia, by Bagdad, to the mouth of the Indus. It occurs not only in Cutch, but in the mountain ranges which separate Scinde from Persia, and which form the passes leading to Caboul; and it has been followed still further eastward into India, as far as eastern Bengal and the frontiers of China.”