The great eruptions of ancient granite are supposed to have occurred during the primary epoch, and chiefly in the carboniferous period. They present themselves sometimes in considerable masses, for the earth’s crust being still thin and permeable, it was prepared as it were for absorbing the granite masses. In consequence of its weak cohesion, the primitive crust of the globe would be rent and penetrated in all directions, as represented in the following section of Cape Wrath, in Sutherlandshire, in which the veins of granite ramify in a very irregular manner across the gneiss and hornblende-schist, there associated with it. ([Fig. 3].)

Fig. 3.—Veins of granite traversing the gneiss of Cape Wrath.

Granite, when it is sound, furnishes a fine building-stone, but we must not suppose that it deserves that character of extreme hardness with which the poets have gratuitously gifted it. Its granular texture renders it unfit for road-stone, where it gets crushed too quickly to dust. With his hammer the geologist easily shapes his specimens; and in the Russian War, at the bombardment of Bomarsund, the shot from our ships demonstrated that ramparts of granite could be as easily demolished as those constructed of limestone.

The component minerals of granite are felspar, quartz, and mica, in varying proportions; felspar being generally the predominant ingredient, and quartz more plentiful than mica—the whole being united into a confusedly granular or crystalline mass. Occasionally it passes insensibly from fine to coarse-grained granite, and the finer grained is even sometimes found embedded in the more coarsely granular variety: sometimes it assumes a porphyritic texture. Porphyritic granite is a variety of granite, the components of which—quartz, felspar, and mica—are set in a non-crystallised paste, uniting the mass in a manner which will be familiar to many of our readers who may have seen the granite of the Land’s End, in Cornwall. Alongside these orthoclase crystals, quartz is implanted, usually in grains of irregular shape, more rarely crystallised, and seldom in the form of perfect crystals. To these ingredients are added thin scales or small hexagonal plates and crystals of white, brown, black, or greenish-coloured mica. Finally, the name of quartziferous porphyry is reserved for those varieties which present crystals of quartz; the other varieties are simply called porphyritic granite. True porphyry presents a paste essentially composed of compact felspar, in which the crystals of orthoclase—that is, felspar with a potash base—are abundantly disseminated, and sometimes with great regularity.

Granite is supposed to have been “formed at considerable depths in the earth, where it has cooled and crystallised slowly under great pressure, where the contained gases could not expand.”[11] “The influence,” says Lyell, “of subterranean heat may extend downwards from the crater of every active volcano to a great depth below, perhaps several miles or leagues, and the effects which are produced deep in the bowels of the earth may, or rather must, be distinct; so that volcanic and plutonic rocks, each different in texture, and sometimes even in composition, may originate simultaneously, the one at the surface, the other far beneath it.” Other views, however, of its origin are not unknown to science: Professor Ramsay and some other geologists consider granite to be metamorphic. “For my own part,” says the Professor, “I believe that in one sense it is an igneous rock; that is to say, that it has been completely fused. But in another sense it is a metamorphic rock, partly because it is impossible in many cases to draw any definite line between gneiss and granite, for they pass into each other by insensible gradations; and granite frequently occupies the space that ought to be filled with gneiss, were it not that the gneiss has been entirely fused. I believe therefore that granite and its allies are simply the effect of the extreme of metamorphism, brought about by great heat with presence of water. In other words, when the metamorphism has been so great that all traces of the semi-crystalline laminated structure have disappeared, a more perfect crystallisation has taken place.”[12] It is obvious that the very result on which the Professor founds his theory, namely, the difficulty “in many cases,” of drawing a line between the granite and the gneiss, would be produced by the sudden injection of the fluid minerals into gneiss, composed of the same materials. Moreover, it is only in some cases that the difficulty exists; in many others the line of separation is definable enough.[13]

The granitic rock called Syenite, in which a part of the mica is replaced by hornblende or amphibole, has to all appearance been erupted to the surface subsequently to the granite, and very often alongside of it. Thus the two extremities of the Vosges, towards Belfort and Strasburg, are eminently syenitic, while the intermediate part, towards Colmar, is as markedly granitic. In the Lyonnais, the southern region is granitic; the northern region, from Arbresle, is in great part syenitic. Syenite also makes its appearance in the Limousin.

Syenite, into which rose-coloured felspar often enters, forms a beautiful rock, because the green or nearly black hornblende heightens, by contrast, the effect of its colour. This rock is a valuable adjunct for architectural ornament; it is that out of which the ancient Egyptians shaped many of their monumental columns, sphinxes, and sarcophagi; the most perfect type of it is found in Egypt, not far from the city of Syene, from which it derives its name. The obelisk of Luxor now in Paris, several of the Egyptian obelisks in Rome, and the celebrated sphinxes, of which copies may be seen in front of the Egyptian Court at the Crystal Palace, the pedestal of the statue of Peter the Great at St. Petersburg, and the facing of the sub-basement of the column in the Place Vendôme in Paris, are of this stone, of which there are quarries in the neighbourhood of Plancher-les-Mines in the Vosges.

Syenite disintegrates more readily than granite, and it contains indurated nodular concretions, which often remain in the form of large spherical balls, in the midst of the débris resulting from disintegration of the mass. It remains to be added that syenitic masses are often very variable as regards their composition; the hornblende is sometimes wanting, in which case we can only recognise an ancient granite. In other instances the hornblende predominates to such a degree, that a large or small-grained diorite, or greenstone, results. The geologist should be prepared to observe these transitions, which are apt to lead him into error if passed over without being noticed.