Fig. 11.—Fissures near Locarno.

The frequency and intensity of the eruptions bear no relation to the dimensions of the volcanic mountain. The eruption of a volcano is usually announced by a subterranean noise, accompanied by shocks, quivering of the ground, and sometimes by actual earthquakes. The noise, which usually proceeds from a great depth, makes itself heard, sometimes over a great extent of country, and resembles a well-sustained fire of artillery, accompanied by the rattle of musketry. Sometimes it is like the heavy rolling of subterranean thunder. Fissures are frequently produced during the eruptions, extending over a considerable radius, as represented in the woodcut on page 57 of the fissures of Locarno ([Fig. 11]), where they present a singular appearance; the clefts radiating from a centre in all directions, not unlike the starred fracture in a cracked pane of glass. The eruption begins with a strong shock, which shakes the whole interior of the mountain; masses of heated vapour and fluids begin to ascend, revealing themselves in some cases by the melting of the snow upon the flanks of the cone of ejection; while simultaneously with the final shock, which overcomes the last resistance opposed by the solid crust of the ground, a considerable body of gas, and more especially of steam, escapes from the mouth of the crater.

The steam, it is important to remark, is essentially the cause of the terrible mechanical effects which accompany volcanic eruptions. Granitic, porphyritic, trachytic, and sometimes even basaltic matters, have reached the surface without producing any of those violent explosions or ejections of rocks and stones which accompany modern volcanic eruptions; the older granites, porphyries, trachytes, and basalts were discharged without violence, because steam did not accompany those melted rocks—a sufficient proof of the comparative calm which attended the ancient as compared with modern eruptions. Well established by scientific observations, this is a fact which enables us to explain the cause of the tremendous mechanical effects attending modern volcanic eruptions, contrasted with the more tranquil eruptions of earlier times.

During the first moments of a volcanic eruption, the accumulated masses of stones and ashes, which fill the crater, are shot up into the sky by the suddenly and powerfully developed elasticity of the steam. This steam, which has been disengaged by the heat of the fluid lava, assumes the form of great rounded bubbles, which are evolved into the air to a great height above the crater, where they expand as they rise, in clouds of dazzling whiteness, assuming that appearance which Pliny the Younger compared to a stone pine rising over Vesuvius. The masses of clouds finally condense and follow the direction of the wind.

These volcanic clouds are grey or black, according to the quantity of ashes, that is, of pulverulent matter or dust, mixed with watery vapour, which they convey. In some eruptions it has been observed that these clouds, on descending to the surface of the soil, spread around an odour of hydrochloric or sulphuric acid, and traces of both these acids are found in the rain which proceeds from the condensation of these clouds.

The fleecy clouds of vapour which issue from the volcanoes are streaked with lightning, followed by continuous peals of thunder; in condensing, they discharge disastrous showers, which sweep the sides of the mountain. Many eruptions, known as mud volcanoes, and watery volcanoes, are nothing more than these heavy rains, carrying down with them showers of ashes, stones, and scoriæ, more or less mixed with water.

Passing on to the phenomena of which the crater is the scene at the time of an eruption, it is stated that at first there is an incessant rise and fall of the lava which fills the interior of the crater. This double movement is often interrupted by violent explosions of gas. The crater of Kilauea, in the Island of Hawaii, contains a lake of molten matter 1,600 feet broad, which is subject to such a double movement of elevation and depression. Each of the vaporous bubbles as it issues from the crater presses the molten lava upwards, till it rises and bursts with great force at the surface. A portion of the lava, half-cooled and reduced to scoriæ, is thus projected upwards, and the several fragments are hurled violently in all directions, like those of a shell at the moment when it bursts.

The greater number of the fragments being thrown vertically into the air, fall back into the crater again. Many accumulating on the edge of the opening add more and more to the height of the cone of eruption. The lighter and smaller fragments, as well as the fine ashes, are drawn upwards by the spiral vapours, and sometimes transported by the winds over almost incredible distances.

In 1794 the ashes from Vesuvius were carried as far as the extremity of Calabria. In 1812 the volcanic ashes of Saint Vincent, in the Antilles, were carried eastward as far as Barbadoes, spreading such obscurity over the island, that, in open day, passengers could not see their way. Finally, some of the masses of molten lava are shot singly into the air during an eruption with a rapid rotatory motion, which causes them to assume the rounded shape in which they are known by the name of volcanic bombs.