Combustibles, which have a special composition, totally different from all other rocks, are obviously the first objects of examination. When we descend in the series of sedimentary deposits, the combustibles are observed completely to change their characters. From the peat which is the product of our own epoch, we pass to lignite, to coal, to anthracite, and even to graphite; and find that their density increases, varying up to at least double. Hydrogen, nitrogen, and, above all, oxygen, diminish rapidly. Volatile and bituminous matters decrease, while carbon undergoes a proportionate increase.
This metamorphism of the combustible minerals, which takes place in deposits of different ages, may also be observed even in the same bed. For instance, in the coal formations of America, which extend to the west of the Alleghany mountains, the Coal-measures contain a certain proportion of volatile matter, which goes on diminishing in proportion as we approach the granite rocks; this proportion rises to fifty per cent. upon the Ohio, but it falls to forty upon the Manon-Gahela, and even to sixteen in the Alleghanies. Finally, in the regions where the strata have been most disturbed, in Pennsylvania and Massachusetts, the coal has been metamorphosed into anthracite and even into graphite or plumbago.
Limestone is one of the rocks upon which we can most easily follow the effects of general metamorphism. When it has not been modified, it is usually found in sedimentary rocks in the state of compact limestone, of coarse limestone, or of earthy limestone such as chalk. But let us consider it in the mountains, especially in mountains which are at the same time granitic, such as the Pyrenees, the Vosges, and the Alps. We shall then see its characters completely modified. In the long and deep valleys of the Alps, for example, we can follow the alterations of the limestone for many leagues, the beds losing more and more their regularity in proportion as we approach the central chain, until they lose themselves in solitary pinnacles and projections enclosed in crystalline schists or granitic rocks. Towards the upper regions of the Alps the limestone divides itself into pseudo-regular fragments, it is more strongly cemented, more compact, more sonorous; its colour becomes paler, and it passes from black to grey by the gradual disappearance of organic and bituminous matter with which it has been impregnated, at the same time its crystalline structure increases in a manner scarcely perceptible. It may even be observed to be metamorphosed into an aggregate of microscopic crystals, and finally to pass into a white saccharoid limestone.
This metamorphism is produced without any decomposition of the limestone; it has rather been softened and half melted by the heat, that is, rendered plastic, so to speak, for we find in it fossils still recognisable, and among these, notably, some Ammonites and Belemnites, the presence of which enables us to state that it is the greyish-black Jurassic limestone, which has been transformed into white saccharoid or granular limestone. If the limestone subjected to this transformation were perfectly pure, it would simply take a crystalline structure; but it is generally mixed with sand and various argillaceous matters, which have been deposited along with it, matters which go to form new minerals. These new minerals, however, are not disseminated by chance; they develop themselves in the direction of the lamination, so to speak, of the limestone, and in its fissures, in such a manner that they present themselves in nodules, seams, and sometimes in veins.
Among the principal minerals of the saccharoid limestone we may mention graphite, quartz, some very varied silicates, such as andalusite, disthene, serpentine, talc, garnet, augite, hornblende, epidote, chlorite, the micas, the felspars; finally, spinel, corundum, phosphate of lime, oxide of iron and oligiste, iron pyrites, &c. Besides these, various minerals in veins figure among those which exist more commonly in the saccharoid limestone.
When metamorphic limestone is sufficiently pure, it is employed as statuary marble. Such is the geological origin of Carrara marble, which is quarried in the Apuan Alps on a great scale; such, also, was the marble of Paros and Antiparos, still so celebrated for its purity. On examination, however, with the lens the Carrara marble exhibits blackish veins and spangles of graphite; the finest blocks, also, frequently contain nodules of ironstone, which are lined with perfectly limpid crystals of quartz. These accidental defects are very annoying to the sculptor, for they are very minute, and nothing on the exterior of the block betrays their existence. In the marble of Paros, even when it is strongly translucent, specks of mica are often found. In the ancient quarries the nodules are so numerous as to have hindered their being worked, up even to the present time.
When the mica which occurs in granular limestone takes a green colour and forms veins, it constitutes the Cipoline marble, which is found in Corsica, and in the Val Godemar in the Alps. Some white marbles are quarried in France, chiefly at Loubie, at Sost, at Saint-Béat in the Pyrenees, and at Chippal in the Vosges. In our country, and especially in Ireland, there are numerous quarries of marble, veined and coloured of every hue, but none of a purity suitable for the finest statuary purposes. All these marbles are only metamorphosed limestones.
The white marbles employed almost all over the world are those of Carrara. They result from the metamorphism of limestone of the Lias. They have not been penetrated by the eruptive rocks, but they have been subjected upon a great scale to a general metamorphism, to which their crystalline structure may be attributed.
It is easily understood that the calcareous strata have not undergone such an energetic metamorphism without the beds of sandstone and clay, associated with them, having also undergone some modification of the same kind. The siliceous beds accompanying the saccharoid limestone have, in short, a character of their own. They are formed of small grains of transparent quartz more or less cemented one to the other in a manner strongly resembling those of the saccharoid limestone. Between these grains are usually developed some lamellæ of mica of brilliant and silky lustre, of which the colour is white, red, or green; in a word, it has produced a quartzite. Some veins of quartz frequently traverse this quartzite in all directions. Independent of the mica, it may contain, besides, the different minerals already mentioned as occurring in the limestone, and particularly silicates—such as disthene, andalusite, staurotide, garnet, and hornblende.
The argillaceous beds present a series of metamorphisms analogous to the preceding. We can follow them readily through all their gradations when we direct our attention towards such granitic masses as those which constitute the Alps, Pyrenees, the Bretagne Mountains, or our own Grampians. The schists may perhaps be considered the first step towards the metamorphism of certain argillaceous rocks; in fact, the schists are not susceptible of mixing with water like clay; they become stony, and acquire a much greater density, but their chief characteristic is a foliated structure.