In following the grand mountainous slopes of the Alps and Carpathians we discover the saliferous rocks by this remarkable accumulation of Aviculæ. The same facies presents itself under identical conditions in Syria, in India, in New Caledonia, in New Zealand, and in Australia. It is not the least curious part of this period, that it presents, on one side of the site of the Alps, which were not yet raised, an immense accumulation of sediment, charged with gypsum, rock-salt, &c., without organic remains; while beyond, a region presents itself equally remarkable for the extraordinary accumulation of the remains of marine Mollusca. Among these were Myophoria lineata, which is often confounded with Trigonia, and Stellispongia variabilis.

France at this period was still the skeleton of what it has since become. A map of that country represents the metamorphic rocks occupying the site of the Alps, the Cévennes, and the Puy-de-Dôme, the country round Nantes, and the Islands of Brittany. The Primary rocks reach the foot of the Pyrenees, the Cotentin, the Vosges, and the Eifel Mountains. Some bands of coal stretch away from Valenciennes to the Rhine, and on the north of the Vosges, these mountains themselves being chiefly composed of Triassic rocks.

RHÆTIC, OR PENARTH SUB-PERIOD.

The attention of geologists has been directed within the last few years, more especially, to a series of deposits which intervene between the New Red Marl of the Trias, and the blue argillaceous limestones and shales of the Lower Lias. The first-mentioned beds, although they attain no great thickness in this country, nevertheless form a well-defined and persistent zone of strata between the unfossiliferous Triassic marls and the lower Liassic limestone with Ostrea Liassica and Ammonites planorbis, A. angulatus and A. Bucklandi; being everywhere characterised by the presence of the same groups of organic remains, and the same general lithological character of the beds. These last may be described as consisting of three sub-divisions, the lowermost composed of alternations of marls, clays, and marly limestones in the lower part, forming a gradual passage downwards into the New Red Marls upon which they repose. 2. A middle group of black, thinly laminated or paper-like shales, with thin layers of indurated limestone, and crowded in places with Pecten Valoniensis, Cardium Rhæticum, Avicula contorta, and other characteristic shells, as well as by the presence, nearly always, of a remarkable bed, which is commonly known as the “Bone-bed.” This thin band of stone, which is so well known at Aust, Axmouth, Westbury-on-Severn, and elsewhere, is a brecciated or conglomerated band of variable thickness which, sometimes a sandstone and sometimes a limestone, is always more or less composed of the teeth, scales, and bones of numerous genera of Fishes and Saurians, together with their fossilised excrement, which will be more fully and subsequently described under the name of Coprolites, under the Liassic period.

The molar tooth of a small predaceous fossil mammal of the Microlestes family (μικρος, little; ληστης, beast), whose nearest living representative appears to be some of the Hypsiprymnidæ or Kangaroo Rats, has been found by Mr. Dawkins in some grey marls underlying the bone-bed on the sea-shore at Watchett, in Somersetshire; affording the earliest known trace of a fossil mammal in the Secondary rocks. Several small teeth belonging to the genus Microlestes have also been discovered by Mr. Charles Moore in a breccia of Rhætic age, filling a fissure traversing Carboniferous Limestone near Frome; and in addition to the discovery of the remains of Microlestes, those of a mammal more closely allied to the Marsupials than any other order, have been met with at Diegerloch, south-east of Stuttgart, in a remarkable bone-breccia, which also yielded coprolites and numerous traces of fishes and reptiles.

The uppermost sub-division includes certain beds of white and cream-coloured limestone, resembling in appearance the smooth fracture and closeness of texture of the lithographic limestone of Solenhofen, and which, known to geologists and quarrymen under the name “white lias,” given to it by Dr. William Smith, was formerly always considered to belong to, and was included in, the Lias proper. The most remarkable bed in this zone is one of only a few inches in thickness, but it has long been known to collectors, and sought after under the name of Cotham Marble or Landscape Stone, the latter name having reference to the curious dendritic markings which make their appearance on breaking the stone at right angles to its bedding, bearing a singular resemblance to a landscape with trees, water, &c.; while the first name is that derived from its occurrence abundantly at Cotham, in the suburbs of Bristol, where the stone was originally found and noticed.

This band of stone is interesting in another respect, because it sometimes shows by its uneven, eroded, and water-worn upper surface, that an interval took place soon after it had been deposited, when the newly-formed stone became partially dissolved, eroded, or worn away by water, before the stratum next in succession was deposited upon it. The same phenomenon is displayed, in a more marked degree, in the uppermost limestone or “white lias” bed of the series, which not only shows an eroded surface, but the holes made by boring Molluscs, exactly as is produced at the present day by the same class of animals, which excavate holes in the rocks between high and low-water marks, to serve for their dwelling-places, and as a protection from the waves to their somewhat delicate shells.

The “White Lias” of Smith is the equivalent of the Koessen beds which immediately underlie the Lower Lias of the Swabian Jura, and have been traced for a hundred miles, from Geneva to the environs of Vienna; and, also, of the Upper St. Cassian beds, which are so called from their occurrence at St. Cassian in the Austrian Alps.

The general character of the series of strata just described, is that of a deposit formed in tolerably shallow water. In the Alps of Lombardy and the Tyrol, in Luxembourg, in France, and, in fact, throughout nearly the whole of Europe, they form a sort of fringe in the margin of the Triassic sea; and, although of comparatively inconsiderable thickness in England, they become highly developed in Lombardy, &c., to an enormous thickness, and constitute the great mass of the Rhætian Alps and a considerable part of the well-known beds of St. Cassian, and Hallstadt in the Austrian Alps. (See [page 205].)