Finding that the glass vessels were somewhat corroded, and that the greater the amount of corrosion the greater was the amount of soda making its appearance around the negative pole, he concluded that the soda was probably a product of the decomposition of the glass by the electric current; he therefore modified the experiment. He passed an electric current through distilled water contained in small cups of agate, previously cleaned by boiling in distilled water for several hours, and connected by threads of the mineral asbestos, chosen as being quite free from vegetable matter; alkali and acid were still produced. The experiment was repeated several times with the same apparatus; acid and alkali were still produced, but the alkali decreased each time. The only conclusion to be drawn was that the alkali came from the water employed. Two small cups of gold were now used to contain the water; a very small amount of alkali appeared at the negative pole, and a little nitric acid at the positive pole. The quantity of acid slowly increased as the experiment continued, whereas the quantity of alkali remained the same as after a few minutes' action of the electric current. The production of alkali is probably due, said Davy, to the presence in the water of some substance which is not removed by distillation in a glass retort. By boiling down in a silver dish a quantity of the water he had used, a very small amount of solid matter was obtained, which after being heated was distinctly alkaline. Moreover when a little of this solid matter was added to the water contained in the two golden cups, there was a sudden and marked increase in the amount of alkali formed around the negative pole. Another quantity of the water which he had used was again distilled in a silver retort, and a little of the distillate was subjected to electrolysis as before. No alkali appeared. A little piece of glass was placed in the water; alkali quickly began to form. Davy thus conclusively proved that the alkali produced during the electrolysis (i.e. decomposition by the electric current) of water is not derived from the water itself, but from mineral impurities contained in the water, or in the vessel in which the water is placed during the experiment. But the production of nitric acid around the positive pole was yet to be accounted for.

Before further experiments could be made it was necessary that Davy should form an hypothesis—that he should mentally connect the appearance of the nitric acid with some other phenomenon sufficient to produce this appearance; he could then devise experiments which would determine whether the connection supposed to exist between the two phenomena really did exist or not.

Now, of the constituents of nitric acid—nitrogen, hydrogen and oxygen—all except the first named are present in pure water; nitrogen is present in large quantity in the ordinary atmosphere. It was only necessary to assume that some of the hydrogen and oxygen produced during the electrolysis of water seized on and combined with some of the nitrogen in the air which surrounded that water, and the continual production of nitric acid during the whole process of electrolysis was explained.

But how was this assumption to be proved or disproved? Davy adopted a method frequently made use of in scientific investigations:—remove the assumed cause of a phenomenon; if the phenomenon ceases to be produced, the assumed cause is probably the real cause. Davy surrounded the little gold cups containing the water to be electrolysed with a glass jar which he connected with an air-pump; he exhausted most of the air from the jar and then passed the electric current through the water. Very little nitric acid appeared. He now again took out most of the air from the glass jar, admitted some hydrogen to supply its place, and again pumped this out. This process he repeated two or three times and then passed the electric current. No acid appeared in the water. He admitted air into the glass vessel; nitric acid began to be produced. Thus he proved that whenever air was present in contact with the water being electrolysed, nitric acid made its appearance, and when the air was wholly removed the acid ceased to be produced. As he had previously shown that the production of this acid was not to be traced to impurities in the water, to the nature of the vessel used to contain the water, or to the nature of the material of which the poles of the battery were composed, the conclusion was forced upon him that the production of nitric acid in the water, and the presence of ordinary air around the water invariably existed together; that if one of these conditions was present, the other was also present—in other words, that one was the cause of the other.

The result of this exhaustive and brilliant piece of work is summed up by Davy in these words: "It seems evident then that water, chemically pure, is decomposed by electricity into gaseous matter alone, into oxygen and hydrogen."

From the effects of the electric current on glass, Davy argued that other earthy compounds would probably undergo change under similar conditions. He therefore had little cups of gypsum made, in which he placed pure water, and passed an electric current through the liquid. Lime was formed around the negative, and sulphuric acid around the positive pole. Using similar apparatus, he proved that the electric current decomposes very many minerals into an earthy or alkaline base and an acid.

Picturing to himself the little particles of a salt as being split by the electric current each into two smaller particles, one possessed of acid and the other of alkaline properties, Davy thought it might be possible to intercept the progress of these smaller particles, which he saw ever travelling towards the positive and negative poles of the battery. He accordingly connected these small glass vessels by threads of washed asbestos; in one of the outer vessels he placed pure water, in the other an aqueous solution of sulphate of potash, and in the central vessel he placed ammonia. The negative pole of the battery being immersed in the sulphate of potash, and the positive pole in the water, it was necessary for the particles of sulphuric acid—produced by the decomposition of the sulphate of potash—to travel through the ammonia in the central vessel before they could find their way to the positive pole. Now, ammonia and sulphuric acid cannot exist in contact—they instantly combine to form sulphate of ammonia; the sulphuric acid particles ought therefore to be arrested by the ammonia. But the sulphuric acid made its appearance at the positive pole just as if the central vessel had contained water. It seemed that the mutual attraction ordinarily exerted between sulphuric acid and ammonia was overcome by the action of the electric current. Ammonia would generally present an insuperable barrier to the progress of sulphuric acid, but the electrical energy appeared to force the acid particles over this barrier; they passed towards their goal as if nothing stood in their way.

Experiments are now multiplied by Davy, and the general conclusion drawn is that "Hydrogen, the alkaline substances, the metals and certain metallic oxides are attracted by negatively electrified metallic surfaces, and repelled by positively electrified metallic surfaces; and contrariwise, that oxygen and acid substances are attracted by positively electrified metallic surfaces, and repelled by negatively electrified metallic surfaces; and these attractive and repulsive forces are sufficiently energetic to destroy or suspend the usual operation of chemical affinity."[10]

To account for this apparent suspension of the ordinary chemical laws, Davy supposes that chemical compounds are continually decomposed and re-formed throughout the liquid which is subjected to the electrical action. Thus, in the experiment with water, ammonia and sulphate of potash, he supposes that the sulphuric acid and ammonia do combine in the central vessel to form sulphate of ammonia, but that this compound is again decomposed, by the electrical energy, into sulphuric acid—which passes on towards the positive pole—and ammonia—which remains in the central vessel—ready to combine with more sulphuric acid as that comes travelling onwards from its source in the vessel containing sulphate of potash to its goal in the vessel containing water.

The eye of the philosopher had pierced beneath the apparent stability of the chemical systems which he studied. To his vision there appeared in those few drops of water and ammonia and sulphate of potash a never-ceasing conflict of contending forces; there appeared a continual shattering and rebuilding of the particles of which the masses were composed. The whole was at rest, the parts were in motion; the whole was constant in chemical composition, the composition of each particle was changed a thousand times in the minutest portion of every second. To the mind of Davy, the electrolysis of every chemical compound was a new application of the great law established by Newton—"To every action there is an equal and opposite reaction."